低小慢雷达流水线式实时数据处理系统的研究与实现

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:wmrik
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
“低小慢”目标具有雷达散射截面积小、多普勒特征不明显以及低空活动的特点,为了实现对其正常的检测与跟踪,需降低相应的门限,同时大量的环境杂波与干扰目标也会进入雷达数据处理系统,使得需要计算的数据量大幅增加,因此对雷达数据处理系统的实时性、稳定性提出了更高的要求。本文研究了基于脉冲多普勒体系“低小慢”雷达的雷达数据处理算法,提出了一种流水线式实时数据处理的方案用于雷达数据处理模块,并基于Python编程语言实现了可多平台移植的雷达控制及显示一体化上位机软件系统。本文主要内容有:(1)本文介绍了“低小慢”目标与雷达数据处理的背景、研究现状,并讨论了传统雷达数据处理领域的方法与原理;在项目方案下,本文采用软件模块化的设计思想,将上位机系统分为人机交互界面模块、雷达数据处理模块、通信管理模块、数据管理模块四个独立的模块,并给出显控一体化雷达上位机软件系统的整体设计方案。(2)针对“低小慢”目标回波信号能量低、受环境干扰大、目标与杂波频谱特征难以区分的特性,本文详细地给出了雷达数据处理模块中核心算法的实现细节。其中,基于扇区数据结构的滑窗选区机制为本文的创新点,可在减少计算量与缓存数据量的同时提升点迹凝聚算法的搜索关联范围;此外,针对“低小慢”目标高机动性的特征,本文设计了实验性的航迹修复子模块,用于拼接中断的航迹,补全航迹中缺失的点迹以及修复有异常点迹的航迹。(3)由于需要计算大量的数据,本文在雷达数据处理模块中采用了流水线式实时数据处理机制,有效提升雷达数据处理模块整体的计算效率,且有效防止因子模块阻塞而带来的系统延时,从而保证了系统的实时性与稳定性。此外,本文还给出了系统实现过程中算法的优化方案,例如向量化法与分组法等,可减少点迹与点迹互联、点迹与航迹互联等互联运算的复杂度,从而提升互联运算的效率。(4)本文深度分析了雷达数据处理模块中各个子模块的算法复杂度,给出了各个子模块的运行耗时测试结果,以及各个子模块准确性分析结果。结果表明,流水线式实时数据处理机制为效率最高的计算方法,同时优化方法有效提升了互联算法的计算效率。
其他文献
定位导航授时(Positioning,Navigation and Timing,PNT)技术提供了位置和时间两个社会上最为基本的信息。目前在无人机、物联网、自动驾驶、无线通信等领域得到广泛的应用。随着科学技术的飞速发展与进步,定位导航授时信息在社会中起到的作用也越来越大。PNT技术在国家安全和军事应用层面都有着举足轻重的作用,是关乎国家战略的军民两用技术。传统的全球导航卫星系统(Global N
近年来,盲源分离(Blind Sources Separation,BSS)在语音信号的识别、检测机械故障、检测脑电波病理情况以及雷达信号的目标识别上应用广泛。一般是通过矩阵变换或者根据源信号的概率统计特性等方法,将每一个源信号分离出来。盲源分离技术根据观测信号的个数可以分为多通道盲源分离(MCBSS)和单通道盲源分离(SCBSS)。多通道盲源分离是将n维的源信号通过某种方法进行混合,可获得m维的
云计算技术在过去十年得到了广泛应用,其很大程度上依赖于计算和数据资源的集中化。由于用户与云数据中心距离较远,访问这些数据中心时存在一定的时延。为了进一步减少时延,移动边缘计算(Mobile Edge Computing,MEC)范式被提出,其将网络资源转移至移动设备附近以降低时延。在移动自组织MEC中,多个移动设备相互协作,资源丰富的移动设备(Mobile Device,MD)将其资源共享给资源贫
激光雷达三维成像是利用激光雷达系统结合扫描或者阵列装置对现实场景进行三维重建的常用技术,具有空间分辨率高,可实现簇叶下目标成像的特点,日趋用于遮蔽目标的探测。在此背景下,本论文针对激光雷达的上述应用,提出基于指数函数拟合系统波形的回波信号分解方法(Exponential Decomposition,ED),旨在有效提高遮蔽目标的信息提取能力及定位精度。在资料调研的基础上,论文概述了激光雷达测距与三
光电探测技术是根据被探测目标辐射或反射的光波的特征来探测或者识别目标的一种技术,随着光电探测技术的发展,出现了许多光电探测器件。根据不同光电探测器件的阈值性能理论来对其视距探测方程进行研究,便于对各种参数对系统作用距离的影响进行分析,对于光电探测器件的设计与开发以及光电探测技术的发展,都有着重要的意义。本文主要对微光夜视系统、红外热成像系统和激光主动成像系统三种光电探测器件进行讨论,研究其阈值性能
近年来,激光技术的飞速发展为开启“光制造”的新时代创造了契机,使得高光束质量激光光源日益成为研究焦点。与此同时,针对激光光束质量测量技术的研究引起了领域内广泛关注,正逐步向更精准、更快速等方向发展。获取激光光束在空间传输过程中的强度分布是解决光束质量测量的核心问题,利用光波横向二维复振幅进行空间三维光场数值计算的方法能够快速求解光强分布,具有无需空间扫描、可实时化的特点,是实现目标的有效途径。然而
毫米波雷达在周界安防和民用领域的应用已经逐渐占据重要地位,在保证较高的雷达性能的同时,降低雷达系统的研制成本成为了需要关注的重点。通过雷达组网技术能够实现对单部雷达性能不足的弥补并扩大系统探测范围,在提高系统性能的同时降低成本。基于可组网、低成本的设计理念,并结合线性调频连续波雷达结构简单、不存在距离盲区的特点,本文以TI TMS320F28379D DSP作为系统控制与信号处理核心,设计了可组网
现代无线通信技术飞速进步,无论是信息的传输速率还是工作带宽,都在向着更快更宽的方向发展。而为了契合高信息容量的传输,调制方式愈来愈复杂,导致信号峰均比过高以及可利用频带短缺。综上,现代无线通信需要新型的发射机结构,而功率放大器在发射机中,起到决定性的作用,将影响整个发射系统的性能。对于功率放大器,它的带宽、效率和线性度又是相互影响、相互限制的指标。那么,基于宽带功率放大器,均衡线性度、效率等指标是
红外偏振探测作为新型探测手段,能够比传统红外探测提供更多目标信息。本文从目标的传热特性和偏振特性出发,考虑材料表面微元面起伏阴影遮效果等因素,建立了复杂目标表面红外偏振计算模型。利用该模型计算不同入射条件下复杂目标表面的偏振分布,分析模型中各种参数对偏振度的影响;在此基础上考虑大气散射对目标表面红外偏振的影响,计算并讨论了大气背景下目标表面的红外偏振分布。研究结果表明:目标表面温度通过影响自身红外
本文以LTE信号为外辐射源信号开展地面无源探测系统用于探测低慢小目标的关键技术研究,主要围绕无源探测单目标、多目标检测、直达波与多径杂波干扰抑制方法和无源定位方法三个方面开展深入的分析和研究。主要研究内容概括如下:(1)分析了LTE信号特性和模糊函数,说明LTE信号相较其它常用外辐射源信号的优势所在;建立了基于LTE的地面无源探测模型,根据探测模型计算相关参数,对最大可探测距离进行了分析;利用FE