论文部分内容阅读
齿轮泵作为齿轮在工业应用中的典型代表液压元件,其具有结构简单且紧凑,体积小、质量轻,污染敏感性小,方便维修,价格低廉等特点,决定了其在液压传动系统中占据举足轻重的重要地位。但是由于普通齿轮泵存在径向力不平衡、流量的脉动大等各种缺陷,其中不能变排量又大大的限制了使用范围。本课题综合普通齿轮泵的结构特点,设计出一种变排量的多齿轮外啮合齿轮泵,降低了种种缺陷的危害。本文首先通过普通外啮合齿轮泵与多齿轮变量齿轮泵工作原理和流量特性的分析对比,并以齿轮泵体积最小和流量脉动系数最小为双目标,寻求建立多齿轮变量齿轮泵结构的优化数学模型,利用优化设计软件分析得出最优解。接着针对齿轮泵存在的径向液压力、困油等现象分析计算,可知该变量泵主动轮的径向液压力基本完全平衡;相同排量下,该泵齿顶圆直径比普通齿轮泵大约减少1/3,从动轮径向力也减小1/3,泵体体积减小,受力情况有效改善,不但延长齿轮的工作寿命,而且为解决齿轮泵高压化提供有力措施。同时对主要零件、变量机构进行选材设计,分析可知轴向变量机构的最小啮合宽度bmin≥B/3,则最大排量大约是最小排量的三倍。而后运用有限元分析软件对多齿轮变量齿轮泵的中心轮、从动轮进行静态分析,得出给定载荷下的应力、位移与安全系数等分布云图,观察分析结果,预测评估其是否满足工作要求,提高结构设计的可靠性。其次分别分析了普通外啮合齿轮泵与多齿轮变量齿轮泵的几何流量、瞬时流量及瞬时流量特性,通过理论分析得出多齿轮泵的瞬时流量变大,而且降低了流量脉动,流量品质获得很大改善。经过仿真验证结论的真实性。为进一步探讨多齿轮变量齿轮泵的齿轮传动,运用虚拟样机仿真技术进行运动学仿真和齿轮碰撞接触力的动力学仿真。利用三维软件初步建立结构简化模型,仿真分析得出角速度与接触力的结果图解,并观察记录。同时对普通外啮合齿轮泵进行虚拟运动仿真,通过对比分析我们发现,变量泵的角速度脉动降低,接触力波动变小,峰值下降,流量脉动也降低,明显减小了冲击、振动等对液压系统的损毁,验证了此结构的可行性,而且缩短了产品结构设计周期,提高了工作效率。为准确捕捉变量泵的内部流场泄漏的变化情况,针对此齿轮泵的三维简化模型进行流场仿真,做有限元分析和计算。重点对主要泄漏即端面间隙和径向间隙的泄漏仿真,仿真分析出当压差Δp=2Mpa时,不同端面间隙、径向间隙与泄漏流量的关系,为深入研究齿轮泵的内部流场奠定了坚实的基础。图[80]表[13]参[76]