【摘 要】
:
本文主要讨论两尺度方程φ(x)=2 sum from k∈Z2 to hkφ(Ax-k),在尺度矩阵A满足|detA|=2且尺度系数{hk}k∈Z2,为特定排列方式的情况下尺度函数φ(x)的正交性和正则性问题,从而构造了一类新的非分离二元正交小波,同时本文研究了这类正交小波的尺度函数的光滑性。 在第一节中,我们介绍了一些与本文相关的基本概念和结论。 在第二节中,给出了本文的主要结论。本
论文部分内容阅读
本文主要讨论两尺度方程φ(x)=2 sum from k∈Z2 to hkφ(Ax-k),在尺度矩阵A满足|detA|=2且尺度系数{hk}k∈Z2,为特定排列方式的情况下尺度函数φ(x)的正交性和正则性问题,从而构造了一类新的非分离二元正交小波,同时本文研究了这类正交小波的尺度函数的光滑性。 在第一节中,我们介绍了一些与本文相关的基本概念和结论。 在第二节中,给出了本文的主要结论。本文在假定两尺度方程中非零尺度系数{hk}k∈Z2排列在第四象限相邻的两行上,尺度矩阵A为,符号函数具有形式C(z,ω)=A(z)+zlω-1B(z),l为任意奇数的条件下,找到了A(z),B(z)的具体表达式,构造了具有r+1阶正则指数的正交尺度函数。 在第三节中,本文首先研究了符号函数C(z,ω)=A(z)+zlω-1B(z)具有r+1阶正则指数时A(z),B(z)所应该满足的条件,这样保证了本文将要构造的小波的尺度函数是r+1阶正则的。在此基础上,根据二维滤波函数h(ω)的正交条件,找到了满足该正交条件的A(z),B(z)的具体表达式,并验证了这样的滤波函数h(ω)符合Cohen准则,从而构造出一类新的具有r+1阶正则指数的非分离二元正交小波。 在第四节中,对本文所构造的尺度函数φ(x)的光滑性进行了尝试性的研究。由于对尺度函数光滑性的考察通常是比较困难的,且光滑的充要条件不易给出,本文经研究得出所构造的尺度函数φ(x)不满足文[6]给出的充分条件,这不足以说明尺度函数φ(x)是不光滑的,因此本文作者将在今后的工作中继续作更深入的研究。 在第五节中,利用本文二元正交非分离小波的构造方法,给出一个具体算例。 最后提出猜想:对于形如及的梅花状格局的尺度矩阵,不论有限非零尺度系数如何排列,其相应的尺度函数都不可能同时具有正交性与光滑性。
其他文献
本文从初等数论中提取出一类pn+m阶非交换p-群Gn,m,其中p为奇素数且n>m≥1,称之为算术p-群,并在n≥2m的条件下确定了该群的自同构群,中心内自同构群的结构,对自同构群中p-元素进行了刻画并计算出G的p’-自同构群在G中不动点的个数.定理1.设群G=,其中p奇素数且n≥2m,则Aut(G)=P×Q,其中P为Aut(G)的正规的Sylow
利用广义函数进行偏微分算子理论的研究是近代微分方程的最基本也是最重要的方法之一.为了更好地解决偏微分方程中出现的各种问题,人们对广义函数的概念进行了各种形式的扩张.上世纪六十年代起,A.Beurling[1],G.Bjorck[2],和H.Komatsu[3-4]等人利用权函数给出了超广义函数的概念.八十年代后,J.Bonet,R.W.Braun,R.Mise,B.A.Taylor和D.Vogt等
为了能够提升事业单位财务工作效率和质量,本文对事业单位会计的信息化建设进行研究。首先阐述了事业单位会计的信息化建设意义;其次分析了事业单位会计的信息化建设问题;最后提出了注重财务管理软件更新、创建信息化财务管理平台,根据会计核算功能差异、明确单位的会计核算科目,结合财务信息化管理要求、增加会计辅助核算信息,根据新政府会计制度要求、注重会计报表编制工作等措施,希望可以提供给相关人员一些参考。
随着互联网时代的到来,大数据的信息管理被各行业所应用,我国目前的经济增长发展十分的迅速。科技的创新与进步给计算机行业带来了新的发展和机遇,信息时代的到来使得我国经济呈现了整体向上的发展趋势,而且随着科技的不断进步,越来越多的企业开始通过计算机技术提高工作效率,实现了互联网技术普及和发展的全面性。科技信息技术同时也给会计工作带来了很多便利,通过智能化的手段,更好的进行会计信息化建设处理,不仅能够促进
信息技术的快速发展与应用,对人们的生活和工作都产生了深刻影响。为了适应信息环境变化,满足新的工作需要,推动行政事业单位会计信息化建设成为一种必然趋势。《政府会计制度》的实施,对行政事业单位会计信息化建设提出了相应要求,并指明了发展方向。基于此,本文首先分析了加强行政事业单位会计信息化建设的必要性,并结合信息技术发展、工作需要与单位实际,对当前我国行政事业单位会计信息化建设中普遍存在的问题进行了深入
昆虫不像高等动物那样有完善专一的免疫体系,缺乏B和T淋巴细胞,没有免疫球蛋白和补体,但是它们有极强的适应能力和防御能力。昆虫在感染病菌或体壁受到损伤等情况下能够迅速合成一系列低分子量的抗菌蛋白/多肽,杀死病菌并且阻止病菌的继续侵染。昆虫抗菌肽具有分子量小、热稳定性好、不易被水解、无免疫原性等特点。近年来,昆虫抗菌肽的研究逐渐成为昆虫免疫学及分子生物学研究热点之一,迄今已从各类昆虫分离鉴定200多个
Kerr非线性效应的研究在量子光学和非线性光学中有重要的意义,例如可以用来实现量子的非破坏测量以及利用交叉相位调制实现光学Kerr开关等。近年来,利用原子和光场相互作用过程中量子相干所导致的EIT效应可得到无吸收、可控的极大增强的三阶Kerr非线性系数,这对实现全量子计算、光量子逻辑门以及单光子开关具有重要的意义。不仅在EIT过程可导致介质的线性和非线性极化率发生很大的变化,而且近来有的研究小组表
设G是一个连通有限简单图,有n个顶点υ1,υ2,…,υn,且有邻接矩阵A(G)=(αij)n×n,此处G的特征多项式为|xI-A(G)|。由于A(G)是实对称矩阵,故A(G)的所有特征值均为实数。不失一般性,假定它们按不增顺序排列,即 λ1(G)≥λ2(G)≥…≥λn(G)且称之为G的特征值。 当我们考虑的图是树的时候,相应的特征值的界已有了丰富的结果。但是对于具有m-匹配的树的第二大
本文的研究内容涉及有向图的三个方面:几乎正则多部竞赛图的Hamilton性,竞赛图的Hamilton-路数的下界及几种特殊有向图控制集的计数问题。 多部或n-部竞赛图是完全n-部图的一个定向。竞赛图是恰有n个顶点的n-部竞赛图。设x是有向图D的一个顶点,dD+(x)和dD-(x)分别表示x的出度和入度。有向图D=(V,A)的非正则度I(D)=(?){|d+(x)-d-(y)|)。称有向图D是
S.Karimis在文献[2]中讨论碳氢化合物时引进了(k,l)-正则极大平面图的定义,即:如果一个简单图G的顶点的度要么是k,要么是l,则称G是(k,l)-正则的。若一个n阶有ε条边的简单图G是(k,l)-正则的,且其边数ε=3n-6,那么我们称图G为(k,l)-正则极大平面图。本文在S.Karimis和Dragan Stevanovic研究的基础上,研究并得出了(k,l)-正则极大平面图存在的