论文部分内容阅读
本篇论文主要分为三个部分,讨论了求解大规模稀疏矩阵单参数特征值问题的二维Arnoldi投影算法.第一部分包括第一章和第二章,主要对求解大规模稀疏矩阵的特征值问题和广义特征值问题的Krylov子空间迭代法进行了回顾,并介绍了其中的核心部分Arnoldi过程。第二部分包括第三章和第四章。第三章详细介绍了新出现的所谓二维Arnoldi过程(Two-dimensional Arnoldi Process(TAP))的构造和基本算法,介绍了二维Krylov子空间和如何利用标准Arnoldi过程构造二维Arnoldi过程的详细算法,并给出了重正交化的二维Arnoldi过程和相应的数值实例。第四章详细给出了如何利用二维Arnoldi过程构造投影空间的一组标准正交基,并给出了用其求解单参数特征值问题(A+δB)x=λCx的二维Arnoldi投影算法(Two-dimensional Arnoldi Projection Method(TPM))。此外,还提出了基于上述算法的两种不同形式的显式重开始策略。随后,将此求解单参数特征值的新方法首次应用在系统无源性的检测和强制以及动力系统的分叉问题中出现的单参数特征值问题中,通过详尽的数值例子分析了该方法的一些性质,并与已知的Krylov子空间迭代方法进行了比较,给出了较好的结果。第六章给出了与求解大规模稀疏矩阵的特征值问题相关的关于Sherman-Morrison-Woodbury公式的一个注记。我们说明了在利用带位移的反迭代方法求解形如(A+UD-1VT)x=λx的特征值问题中,若利用Sherman-Morrison-Woodbury公式求解位移后近似奇异线性方程组,反迭代法仍然可以得到十分精确的近似特征值和特征向量,并且当A,U,V是稀疏矩阵时,所花费的时间少于LU分解求解近似奇异线性方程组的时间。