参数化高超声速巡航飞行器组合布局设计与气动优化分析

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:forbook121
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高超声速巡航飞行器具有飞行速度快、高度适中、可重复使用、航程远等特点,其技术的突破与应用将会引发航空航天技术的跨越式变革,对国家综合实力产生深远影响。以吸气式冲压发动机为动力的高超声速巡航飞行器利用大气中的氧气为氧化剂,可实现远距离巡航飞行,可用于远程投送、两级入轨第一级、高超声速客机等用途,在未来具有重大的应用潜力。高超声速巡航飞行器的设计与飞行器的气动、结构、防热、材料、飞行方案等因素密切相关,是一个多学科紧密耦合的系统工程。气动布局设计是高超声速飞行器设计的基础,但是不同于常规飞行器,高超声速飞行器的布局设计还没有成熟的方法可供参考。为了兼顾气动性能和多参数协调的设计要求,采用单纯的乘波体和简单的翼身组合都很难满足综合性能最优的设计目标。本文以高超声速巡航飞行器为研究对象,分别从创新总体布局和先进气动性能设计出发,针对未来高超声速巡航飞行器的气动布局设计与性能优化分析进行了系统研究。针对高超声速飞行器先进气动布局设计难点,提出了一种多段接序、分片组合的高超声速参数化气动布局设计方法,将飞行器分为前体、机翼和中心体等部件进行参数化设计,提出了高超声速巡航飞行器模块化设计理念。前体和机翼以乘波体为设计思路,中心体构型根据装载需求设计,从而达到飞行器在边缘能够满足压力封闭,有效容积集中在中心体附近的总体布局方案,最终实现具有“乘波特性”的参数可调的高超声速巡航飞行器。论文以组合布局为基础,分别开展了快速性能评估、创新乘波体构型、参数化总体设计、气动布局优化等研究工作。针对高超声速飞行器设计状态的性能设计和快速评估需求,基于高超声速小扰动理论发展了一套快速预测锥导乘波体和组合布局高超声速巡航飞行器气动性能的计算方法,该方法可以根据不同设计参数快速评估高超声速飞行器的气动性能,同时可根据任务目标给出飞行器总体布局设计的初步参数,为进一步精细化设计提供较好的初始条件。针对传统乘波体容积与升阻比的矛盾,提出了一种新型容积可调吻切乘波体设计方法,在上表面出口型线(FCC)和下表面激波出口型线(ICC)基础上引入了一条新的出口激波圆心曲线(COC),释放了出口激波曲线的部分几何约束,通过调整出口激波曲率半径达到改变乘波体容积特性的目的,拓宽了现有吻切乘波体设计空间。CFD数值模拟结果表明:在无粘条件下,容积率小的乘波体拥有更大的升阻比;在粘性条件下,乘波体升阻比差异较小,本文设计的乘波体具备更大的容积率,具有升阻比和容积的综合优势。针对部件难以衔接问题,提出了一种可变激波角乘波体设计方法,通过改变不同扩张角处的激波角设计不同构型的乘波体。按照激波角从对称面到端点的分布规律,分别设计了定激波角、激波角减小和激波角增加等乘波体,采用数值模拟技术研究了激波角分布规律对乘波体气动性能的影响。研究结果表明:变激波角乘波体具有独特的气动特性、容积特性和压心特性,能够为高超声速飞行器的气动布局设计提供有益参考。针对传统单级乘波前体压缩能力不足的问题,提出了一种纵向分段的多级压缩乘波体设计方法。发展了一种非均匀来流乘波体设计方法,基于该方法分别设计了锥导二级/三级压缩乘波体,吻切锥二级/三级压缩乘波体。数值计算结果表明多级压缩能够有效提升进气道入口处的流量系数、静压比和总压恢复系数等性能参数,可以有效提升吸气式高超声速巡航飞行器的总体性能。针对高超声速飞行器数值计算和优化难等问题,发展了一套快速估算任意外形的高超声速气动性能软件,通过面元法实现快速评估不同研究对象的气动性能和容积特性。发展了一套自由变形技术方法结合面元法的高超声速飞行器气动布局优化程序,实现了高超声速飞行器多参数建模、快速气动评估和快速布局优化,有效地提升了高超声速飞行器设计和优化效率。论文最后以未来高超声速巡航客机为对象,设计了一款包含多级压缩前体、进气道和垂尾的高超声速客机。采用面元法、FFD和多目标优化算法实现了高超声速客机的布局优化,采用数值模拟技术研究了高超声速客机的升阻特性和横航向稳定性,验证了本文组合布局设计、气动性能估算和外形优化等设计和分析方法。论文从高超声速飞行器创新气动布局设计出发,以乘波体为基础,提出了多种新型乘波体设计方法和分段接续的组合布局总体设计方案,达到了同时改善高超声速飞行器容积特性和气动性能的目的,采用基于HSDT和面元法快速估算方法以及CFD数值模拟技术开展了性能研究。本文研究的具有“乘波特性”的组合布局飞行器可为未来高超声速巡航飞行器提供设计参考。论文建立的设计方法是高超声速飞行器复杂布局设计方法中的基础,通过未来多学科优化设计的进一步研究可以提升我国在高超声速巡航飞行器的工程应用能力。
其他文献
无人潜航器(Unmanned Underwater Vehicle,UUV)执行任务的多样性、服役环境的复杂性等给近场目标探测定位提出了需求与挑战,目前常规的声纳和光学手段难以应对。鱼类凭借侧线器官,能精准地获得周围流场信息,实现对周围目标的精确感知,为UUV近场目标探测定位提供了新的思路。论文在国家自然科学基金项目资助下,针对基于侧线感知原理的水下近场目标定位问题,系统分析侧线近场目标感知机理,
高超声速滑翔目标(Hypersonic Glide Target,HGT)突破了传统弹道式目标的飞行模式,凭借大升阻比的气动外形在临近空间长时间滑翔飞行。作为当前最具威胁的进攻性武器之一,兼具速度和机动性,如何拦截HGT是当前导弹防御领域的研究热点与前沿问题。论文以此为背景,主要针对目标跟踪和拦截制导方法开展了研究。首先,针对HGT跟踪模型中的建模误差导致跟踪精度不高的问题,基于无迹卡尔曼滤波(U
近年来,空天领域的竞争日益激烈,对飞行器的设计水平提出了更高的要求。飞行器设计涉及多类学科,包括空气动力学、结构力学和热力学等等。为了提升学科分析精度,需要使用高精度学科模型。如果直接将其嵌入飞行器多学科优化中,必将导致高昂的计算代价。为了降低其计算代价,通常采用近似建模方法。作为一种概率近似建模方法,Kriging近似模型具有较好的非线性近似能力和独特的误差估计功能,受到了广泛关注。因此,本文对
柔性绳网在太空清除空间碎片和低空反无人机作战中,具有重要的应用价值,但是现有模型无法精确模拟绳网的工作过程,进而无法有效的进行绳网系统的优化设计。因此本文针对柔性绳网系统的动力学与应用问题,建立了考虑空气作用力的绳网集中质量模型和绝对节点坐标模型,提出了一种新的绳网折叠封贮模式,建立了绳网的折叠封贮及拉出展开过程的精细动力学模型,并在此基础上对空间绳网捕获任务和地面反无人机绳网捕获任务进行了优化设
PELE弹(Penetrator with Enhanced Lateral Effect,横向效应增强型弹丸)作为一种新型穿甲战斗部,其主要原理是利用弹丸壳体和内芯材料性质的差异将弹体部分轴向动能转化为破片径向动能,较好地解决了传统穿甲弹后效不足的问题。活性材料(以金属/聚合物的混合物类型为例)是一种新型含能材料,在常态下十分钝感,但在高速冲击加载下会发生化学反应释放的化学能远大于其本身的动能。
跨介质航行体兼具空中高速飞行和水下隐蔽能力,是未来海上装备发展的重要方向。跨介质航行体近水面超空泡航行阶段处于自然空泡、通气空泡,自由界面及射流等多种机制耦合的复杂流动环境,空泡形态及流体动力复杂多变,预测难度较大。本文基于三维可压缩N-S方程,耦合高精度运动界面追踪方法、空化模型与湍流模型,建立了复杂多相、可压缩空化流动数值计算方法。开展了不同工况下空化流场数值模拟与相关机理实验研究,总结了多因
卫星集群,是由长期稳定飞行在邻近开普勒轨道上的多个成员卫星,通过星间无线通信网络互联形成的、具备载荷和平台资源共享能力的分布式空间系统。相比于单体式航天器,卫星集群系统具有高度的鲁棒性、灵活性;相比于传统的分布式卫星系统,卫星集群具有轨道控制开销少、可长期在轨运行和技术风险小的优势。卫星集群代表着分布式卫星系统发展的最新方向,在当前阶段开展卫星集群关键技术的研究具有重要的理论价值和工程实践意义。集
随着航天技术的不断发展,高分辨率对地遥感卫星的空间分辨率和时间分辨率不断提升,除了对有效载荷分辨率提出更严格的要求外,还需要卫星具有高机动性能、高精度姿态控制能力。通过快速姿态机动实现卫星对地面目标的灵活观测,提高对地遥感的时间分辨率,是体现遥感卫星在轨效能的关键。低轨高分辨率遥感卫星均采用推扫成像控制模式,卫星实现姿态快速机动到位的同时,需要同步完成成像期间像移补偿对卫星偏航姿态的控制要求,即偏
本文以高速可压缩湍流的数值模拟方法为研究背景,以随机多尺度模型中成熟度与创新性兼具的一维湍流模型(One-dimensional Turbulence,ODT)为研究对象,系统开展了将ODT模型及其相关数值模拟方法向可压缩湍流领域拓展的研究工作。论文从可压缩湍流的物理特性出发,以数理建模、模型测试和典型算例验证为主要研究手段,完成了对基于ODT模型的可压缩湍流数值模拟方法从认识理解到验证实现,最终
航天产品的生产是一种典型的单件小批量混流生产模式,制造工艺重复性差,加工路线安排随机性大、生产过程极易受到不确定性因素影响而导致生产调度调整的常态化。因此,如何建立一种能够适应这种高度耦合、动态和不确定生产环境的生产调度方法,合理地处理人、制造资源与加工过程之间矛盾与冲突,是航天军工企业迫切需要解决的问题。本文在建立群系统思想的基础上,通过借鉴和模拟人类的认知规律,针对如何赋予制造群系统认知能力以