论文部分内容阅读
不用培养、直接对样品中的病原菌进行检测和鉴定,是食品中病原监测和临床微生物诊断的终极目标。几十年来,多种不同方法(如染色技术)用于微生物的直接检测,但只是对可疑微生物进行推测性鉴定。随着分子生物学的发展,一些技术如:PCR、核酸探针、荧光原位杂交等可直接应用于特定微生物的检测和鉴定,并成为现代微生物快速诊断的重要方法。目前此类快速方法主要是用于临床上一些重要微生物的直接诊断;对于食品来说,由于其成分复杂,自然含微生物量低,这些方法很难直接应用到食品中污染微生物的检测,必须在检测前对样品进行预增菌。这不仅达不到快速检测的目的,更是增加了检测成本。近年来,肽核酸探针(PNA)技术开始在微生物诊断领域崭露头角,PNA(peptide nucleic acid-肽核酸)是1991年由丹麦科学家Neilsen等设计的一种以中性酰胺键为骨架的全新DNA类似物,可序列特异性地作用于DNA的大沟槽,与DNA互补链结合,而本身具有很好的化学和生物学稳定性,并且对DNA/RNA亦具有良好的识别特性,互补杂交时呈现快速和结合力强的特性。本论文以PNA探针技术为基础,结合荧光原位杂交(Fluorescent in situ hybridization,FISH)、显微荧光成像、荧光扫描和免疫磁珠吸附技术,建立针对重要食源性病原微生物的快速检测方法。1.重要食源性致病菌的肽核酸原位荧光杂交检测技术研究分别建立针对单核细胞增生李斯特菌(简称“单增李斯特菌”)、弧菌、沙门氏菌、金色葡萄球菌、坂琦杆菌和空肠弯曲杆菌等多种重要食源性致病菌的单色和多色固相PNA-FISH方法,通过BLAST比对和ProbeCheck验证,设计合成的单增李斯特菌、弧菌、金色葡萄球菌PNA探针的敏感性均达100%,特异性99%以上;通过优化原位杂交条件,建立的方法既具有分子生物学检测的特异性,又有传统形态学鉴定的直观性等特点,可更快、更准确地鉴定培养物或菌落,实现对病原微生物的快速鉴别。在单色PNA-FISH基础上,通过对普通落射荧光显微镜I3、N21、L5和Y3等荧光检测模块的组合选择,有效降低相邻荧光间的干扰,实现单增李斯特菌-弧菌、沙门氏菌-坂琦杆菌、沙门氏菌-空肠弯曲杆菌三对组合的双色PNA-FISH检测,克服了相关文献报道中所利用的激光共聚焦显微镜或流式细胞仪操作复杂、普及率低的缺陷,更是有助于该技术在实际检测中的应用。2.基于肽核酸原位杂交的重要食源性病原菌显微形态学鉴定系统研究针对所使用的PNA-FISH技术需要人工识别发荧光细菌的形态,本研究采用软件设计三层架构技术,将微生物荧光形态识别业务划分为界面表示层(User interface layer)、业务逻辑层(Business logic layer)和数据访问层(Data access layer)。通过创建荧光形态数据库及检索分析,建立一套基于PNA-FISH的微生物形态鉴别系统。该系统可以对样本的基本信息、检测信息等进行管理,制作图文报告;对所采集的目标细菌荧光信号和图像,从细菌的菌体大小、长宽比以及排列方式进行预判,并与形态数据库进行比对、分析,实现包括单增李斯特菌、弧菌、沙门氏菌、金色葡萄球菌、坂琦杆菌和空肠弯曲杆菌等在内多种病原微生物的快速鉴别智能化和标准化的需求。3.单核细胞增生李斯特菌的肽核酸分子信标标记和荧光扫描快速检测上述建立的固相PNA-FISH需要有固相载体和荧光显微镜,在操作便利和检测通量都有一定限制。为此,本论文以探索将PNA探针技术和分子信标技术结合,建立液相PNA分子信标的原位杂交和荧光快速扫描检测单增李斯特菌的方法。在肽核酸探针的5’端和3’端分别标记报告荧光基团和淬灭基团,利用FISH技术和荧光扫描技术对PNA杂交结果进行快速检测,可以在10分钟内完成2-3个荧光波段的96孔扫描,实现高通量检测,检测速度大幅提高;分子信标PNA探针的假阳性率为5.7%-8.6%,假阴性率为1.4%,杂交成功率90%以上。该方法克服了普通PNA-FISH法检测结果判断必须依靠显微镜逐一进行,费力和耗时的缺陷,可实现对单增李斯特菌的快速高通量筛选。4.IMS-PNA-FISH技术在重要食源性病原快速检测中的应用将商品化免疫磁珠分离技术(immuno-magnetic separation,IMS)结合固相PNA-FISH方法应用于食品中致病菌的检测,尝试突破PNA-FISH技术难以直接应用于食品中病原微生物检测的瓶颈。通过对水产品中单增李斯特菌、副溶血性弧菌,肉中沙门氏菌、空肠弯曲杆菌,牛乳中沙门氏菌、坂琦杆菌等多种致病菌人工污染添加的检测结果显示,建立的IMS-PNA-FISH技术对主要食源性致病菌的检测下限可达到100cfu/ml,检测时间比传统培养和分离鉴定过程缩短2/3以上。将该方法与国标法同时对380份水产品及其加工环境样品、357份禽肉及其加工环境样品进行检测,结果表明IMS-PNA-FISH的检测结果与国标法高度一致(副溶血性弧菌除外)。IMS-PNA-FISH技术结合上述微生物形态鉴别系统,可实现目标细菌形态判定及报告打印的自动化,可望替代食源性致病菌传统的培养-分离-鉴定流程。综上所述,本研究建立的PNA-FISH检测技术以及基于该技术的微生物形态鉴定系统突破了现有鉴定技术(包括传统培养和生化鉴定、多种体外分子扩增技术等)的缺陷,兼顾了分子生物学技术的特异性和传统形态学鉴定的直观性,结合智能化、标准化的形态学识别系统和免疫磁珠富集系统,使PNA-FISH技术可直接用于食品中病原微生物的快速检测,为食源性致病菌的检测提供了一个全新的技术平台。