论文部分内容阅读
精馏作为流程工业中成熟度最高、可靠性最好、应用最广泛,也是能耗相对巨大的分离技术,其节能问题一直深受学术界和工业界的关注。对于完全热耦合精馏塔,在预分馏塔和主分馏塔之间,由两对流向互逆的热耦合气液流股进行连接,从而形成全热耦合精馏。这种结构可最大程度的实现精馏塔之间的热量耦合,提高了精馏过程的可逆性,从而大幅降低能耗,以及减少设备费用的投资。在本文的研究中,首先采用了与全热耦合精馏塔等价的“三塔模型”,建立了基于Fenske-Underwood-Gilliand方法的较为系统的全热耦合精馏简捷设计法,可得到全塔理论板数、适宜的进料和侧线液相采出位置以及操作回流比等参数,为之后的严格模拟提供了较好的初值。同时在建模过程中,确定了可使全塔最小气相流率最小的中间组分分配比β的最优区间,即在该区间内的β值可使全塔的最小气相流率保持在最小状态。之后,本文以正戊烷、正己烷以及正庚烷物系为例对全热耦合精馏作了严格的模拟研究和特性分析。在优化过程中,着重调整了进料板位置,讨论了该因素对优化结果带来的影响。之后通过模拟,研究了气液相耦合流股分割比RvRl与再沸器的热负荷之间的变化规律,而且在确定的操作条件下,仅存在唯一一对使再沸器热负荷最小的RvRl值,并且中间组分分配比β对再沸器热负荷的影响也表现出了相同的规律。因此,需要选择合适的Rv和Rl值来保证全热耦合精馏塔在最优条件下操作。最后,本文对全热耦合催化加氢精馏过程进行了模拟。以碳三馏分的催化加氢为研究对象,确定了合适的宏观动力学参数,并借助AspenPlus软件的模拟,得到了诸如全塔理论板数、塔顶与侧线产品采出量、各流股进出塔位置以及操作回流比等设计条件,确定了该技术在理论研究与模拟分析上的可行性,为今后的深入研究作了初步探索。