论文部分内容阅读
本课题旨在研究光纤陀螺捷联惯性导航系统的标定技术。标定技术主要分为分立式标定及系统级标定。捷联惯导系统的工作原理是利用直接与载体固联的惯性组件(陀螺仪和加速度计)来敏感载体的运动,结合一定初始信息,通过计算确定载体的位置及姿态信息。然而,作为一种自主式导航系统,捷联惯导系统在导航过程中会存在一些系统误差,不能依靠外界信息得到修正,最终系统的导航精度会受到影响。其中,最主要的误差源是惯性组件误差。所以,高精度的惯性测量组件是惯导系统导航精度的保证。本文主要研究的是如何通过标定技术来测量惯性组件的误差项,并在捷联惯导系统导航过程中对误差项进行补偿以提高系统整体导航精度。本文将首先介绍分立式标定技术的原理。分立式标定技术由于标定原理简单,误差建模灵活,成为现在应用最为广泛的实验室标定方法。然而,由于存在一些不可避免的客观因素,使分立式标定结果存在一定的误差,而这些误差将对导航结果产生许多不良的影响。本文将通过误差建模,详细的分析分立式标定产生的惯性组件误差对导航系统精度造成的影响,并进行仿真实验来验证理论推导的正确性。由于,分立式标定存在许多缺点,本文将着重研究一种以卡尔曼滤波为核心的,更为先进的标定技术——系统级标定技术。系统级标定的原理是根据陀螺仪和加速度计的输出值进行导航解算,并将解算结果与转台提供的载体真实值进行对比,得到系统的测量误差,将测量误差作为系统观测变量,惯性组件待标定的误差项作为状态变量,应用卡尔曼滤波器来对状态变量进行无偏估计。系统级标定技术可以准确的估计出惯性组件的所有误差项,以便于在导航过程中对惯导系统进行误差补偿。本课题在对所设计的系统级标定进行仿真验证之前,先对滤波器及所设计的标定路径进行了可观测性分析。分析结果显示,所设计的标定实验可以保证所有状态量均能得到有效估计。而后采用MATLAB对整个系统级标定过程进行仿真实验。仿真验证,所设计的滤波器及标定路径都是可行的,各状态变量的估计精度很高,收敛时间很短。最后,本文将进行分立式标定及系统级标定的转台实验,并将两组实验结果带入真实的导航数据中进行导航解算。通过对比解算结果证明,系统级标定无论是在标定精度还是在标定速度上都是一种更为先进的标定技术,也是未来标定技术发展的方向。