论文部分内容阅读
国内大部分地表水水厂,近年由于水源污染,水质恶化,富营养化严重,水厂净水系统在常规水处理工艺基础上,正在研究和开发常规强化、预处理和深度处理技术。而水源水质的变化成为决定水处理工艺及操作运行条件的重要因素。因此,在保证供水水质的前提下,建立源水水质监测、预测及数据传输系统对于实现水质变化条件下启/停非常规工艺、实时优化及调整水处理工序及工艺参数、实现水厂经济运行有重要的意义。 引滦入津的滦河水近年季节性的藻类高发,给水厂运行带来很大的危害。天津自来水集团公司所属的三个水厂已采用了不同预处理措施以降低藻类对常规水处理工艺的影响。为保证供水水质,实时优化水处理工艺,在本次研究中建立源水水质在线监测与预测系统是研究的重要内容之一。 为建立预测藻类高发的水质模型,收集了芥园水厂水源地—预沉池上游宜兴埠泵站1997—2002年1683组的日监测水质资料(不连续),在常年监测的指标中叶绿素的检测频率是最高,内插的数据最少,将其确定为藻类高发指示指标。藻类的动态生长变化非常复杂,线性模型过于简单,而具有非线性特征的神经网络是预测叶绿素的适宜方法。通过灰色关联度分析、相关分析、指标聚类分析、通径分析及藻类生长机理分析选择了模型不同的输入变量,据此确定了5种不同预测模型;通过对灰色关联度—神经网络预测模型多次数学试验,选择了适宜模型结构、输入延迟等神经网路模型参数,再将此参数应用于其它预测模型,并对模型进行优选,最终确定指标聚类—神经网络模型是预测滞后3d叶绿素应用模型。其拓扑结构为:6-3-3-1前馈神经网络,输入延迟为6,即要求变量是此前连续6d水质指标,输入变量:叶绿素、浊度、氨氮、水温、pH、总碱度。通过实际验证,叶绿素预测准确率在80%以上。 在天津市两个水厂的水源地(芥园和凌庄)—西河预沉池建立了源水水质在线监测系统。在调研仪表检测原理和生产现状的基础上,完成了仪表选型;在学习数据采集相关软西安建筑科技大学硕士学位论文硬件相关知识后,系统经精心设计、安装及在LabView平台上开发出了水质在线监测软件,所建成系统的运行稳定可靠。 通过GPRS组建监测数据传输网络及利用LabView平台上数据套接技术,经济可靠地建立了源水远程监测虚拟仪器。现阶段芥园水厂已经实现了源水水质实时监测、数据采集、存储及处理,减少了源水人工监测频次。论文研究成果为下阶段建立源水水质预警系统奠定了良好基础。