论文部分内容阅读
随着系统的结构越来越复杂,功能越来越完善,自动化程度也越水越高,系统的脆性问题也越来越成为系统的一个不容忽视的现象。系统的脆性一旦激发,将会造成整个系统的崩溃,这会给整个系统带来不可估量的损失。因此分析脆性激发的原因、产生的机理、对脆性源的辨识与评价、脆性激发所需的条件等等与脆性有关的问题,就成为迫不容缓的一件大事。 本文针对不同的系统,分别应用元胞自动机和图论建立了系统的脆性模型并进行了仿真。研究了平均状态参数与脆性源总数间的关系;平均状态参数与脆性激发规模的关系;脆性激发方向的模拟;状态参数分布与脆性激发的关系;系统脆性源的求取方法。研究了系统脆性与自组织临界性间的关系,提出了系统脆性激发时系统处于自组织临界态的观点。并通过系统崩溃规模与频次间的幂律关系和系统的时间序列具有长程相关性两个方面证实了作者的结论。通过对系统脆性的研究总结了系统脆性激发的判断方法。给出了系统脆性传播的模式。基于模糊层次分析法对系统脆性源进行了评价,求出了导致严重后果的危险脆性源。把这种方法应用于电力变压器的脆性源评价。求出了电力变压器的危险脆性源。研究了电力系统的脆性及电力系统脆性激发的触发条件。电力系统同样具有自组织临界性,文中用大量的材料证明了电力系统的自组织临界性,包括电力系统大停电规模与频率的幂律关系、电力系统大停电规模分布的分形分维特征和检测时间序列的长时间相关性。接着对电力系统自组织临界现象作以解释。用快动态和慢动态模型对电力系统自组织临界进行了模拟。给出了电力系统自组织临界性的临界点的求取方法。证明了电力系统包含了第一临界点和第二临界点。基于元胞自动机建立了电力系统的脆性模型并进行了仿真。基于动态潮流法和直流潮流法进行了电力系统脆性源的辨识工作。同时对一个3节点的电力系统,求出了其脆性源。