【摘 要】
:
随着目前医学超声图像学技术不断发展,利用超声引导注射的方法被广泛应用于臂丛神经阻滞麻醉手术中。但由于超声图像的噪音干扰和低分辨率问题,臂丛神经超声图像的分析更依赖医生的经验并且耗时费力。而深度学习方法因其智能、高效的优势,已逐渐成为医学图像分析的首选。利用深度学习进行臂丛神经超声图像智能分析,能自动地从病人的超声医学影像中准确识别出麻醉手术场景中医生所关注的目标部位,为臂丛神经阻滞麻醉提供诊疗辅助
论文部分内容阅读
随着目前医学超声图像学技术不断发展,利用超声引导注射的方法被广泛应用于臂丛神经阻滞麻醉手术中。但由于超声图像的噪音干扰和低分辨率问题,臂丛神经超声图像的分析更依赖医生的经验并且耗时费力。而深度学习方法因其智能、高效的优势,已逐渐成为医学图像分析的首选。利用深度学习进行臂丛神经超声图像智能分析,能自动地从病人的超声医学影像中准确识别出麻醉手术场景中医生所关注的目标部位,为臂丛神经阻滞麻醉提供诊疗辅助信息。为此,本文开展了针对臂丛神经超声图像的多目标分割方法的研究,构建了基于深度学习图像分割技术的多目标分割模型,用于在臂丛神经超声图像中识别关键的多目标解剖组织,从而提升臂丛神经阻滞手术的效率。本文的主要工作内容如下:(1)针对深度学习在超声图像多目标分割的应用,建立了具有专业的医学解剖组织标记且规范化的臂丛神经超声图像数据库,以训练识别精度更高、更高效的超声图像多目标分割模型。(2)提出了臂丛神经超声图像多目标分割网络,引入实际医学场景的先验知识约束网络模型不断学习超声图像中多目标之间的关系。利用超声图像数据库,训练出了能够在超声图像中同时精确分割出神经、静脉血管、动脉血管、肌肉组织等关键解剖组织的深度学习模型。(3)搭建了臂丛神经超声图像的对抗样本生成网络。通过学习干扰生成了多种对抗攻击后的对抗样本,并通过对抗训练增强网络的稳定性和鲁棒性。
其他文献
社会对于智能视觉技术的需求越来越强,也推动了计算机视觉技术的高速发展,高速发展的视觉技术也在反哺社会,新时代的社会发展离不开计算机视觉技术。目标检测是计算机视觉技术的一个分支,其已经应用在工业、医学、交通、安全、军事等各个领域,取得了良好的效果。其能够使社会生活更加便利,能够帮助各行各业处理各种视觉任务,节约成本。当前目标检测领域的研究重点集中在提高目标检测技术的检测精度,检测速度以及更简易的部署
随着无线通信技术和人工智能的发展,基于WiFi的室内人员感知已经成为了炙手可热的研究对象。其中活动识别和手势识别应用广泛。由于WiFi信号具有覆盖范围广、普及性高等优点,且其物理层信道状态信息(CSI)对人们的活动和手势感知较为敏感,适合用于室内的人员感知任务。但是WiFi信号存在不稳定、受环境变化影响大的缺陷,从而制约了无线感知的进一步发展和实际应用。因此本文针对环境对无线信号的影响,从应对环境
互联网技术的发展导致网络视频数量激增,也带来了对更可靠、高效的视频处理技术的巨大需求。其中,行为识别作为视频处理的核心任务,受到了越来越大的关注。行为识别算法的性能关键在于对视频空间信息和运动信息的建模能力,然而,目前的行为识别模型往往难以对具有显著变化的复杂时序结构进行建模,从而导致模型的运动信息建模能力不足。因此,研究行为识别模型中的运动信息建模方案具有重要意义。基于上述原因,本文提出了一个基
自然语言处理(NLP)作为人工智能领域的重要分支,其研究的方向十分多。其中生成式任务更是当下的研究热点,因为生成式任务更具挑战性,它主要包括自动文本摘要和机器翻译两个子任务。自动文本摘要即机器从给定的文本中提取整个文本的关键内容。自动文本摘要可以极大地提升人们从海量数据中获取关键信息的效率,除此自动文本摘要还具备为短新闻文本生成标题的用途。当下基于神经网络设计的文本摘要模型都用到了多层编码器,而源
本论文主要研究平均曲率流的自相似解的性质和逆平均曲率流在几何中的应用。欧氏空间中的子流形XMn-Rn+p称为是self-shrinker,如果其平均曲率向量H和位置向量X满足方程其中上表示在法空间上的投影。Self-shrinker不仅源于平均曲率流的自相似解,也描述了平均曲率流的奇点模型,在平均曲率流的研究中有重要地位。本论文第3,4,5章将研究self-shrinker的性质。我们首先证明了任
随着中国经济的发展,城镇化进程的不断加快,为了进一步提高城市交通系统的运输效率,智能交通系统应运而生。为了解决在封闭道路场景下的交通拥堵问题和城市道路场景下的小目标检测和识别问题,本文做了大量理论论证和推导,并提出了相应的方案用来解决不同场景存在的问题。针对封闭道路场景下的智能交通系统,主要需要解决在运行过程中的交通流量不稳定性问题。现有的交通流量控制模型主要针对理想情况下的交通流量进行控制。因而
多项式系统所有孤立解的计算在工程和科学上有着广泛的应用。同伦连续方法近20年来已经成为求解多项式系统全部孤立解的一种可靠而有效的数值算法。由于曲线跟踪的算法和技巧已经比较完善,所以减少跟踪解曲线的数目成为进一步改进这一方法的关键。齐次同伦方法给出了方程组解的个数一个比较紧的上界。在计算上界的过程中遇到了两个问题,这两个问题计算的复杂度本质上都是指数量级的。一是在所有可能的分组中找到相应的m-齐次B
随着智慧城市建设的发展以及安防摄像头的广泛部署,社会公共安全需求日益增加,人工的视频监控方式已经不能满足需要,利用计算机视觉技术对视频数据进行分析成为了新的研究热点。基于监控视频的人体行为识别技术作为计算机视觉领域的一个基本任务,包括视频中的人体检测,人体姿态估计,人体跟踪以及对时间序列数据的分析与理解等问题。其难点主要在于人体动作的多样性导致行为类别难以定义,数据集难以收集。其次,监控系统中的视
伴随着计算机技术的高速发展,人工智能技术在生活中的各个方面都有了越来越多的应用,智能体视觉导航也成为了研究热点。但目前视觉导航用到的深度强化学习技术所面临的难收敛、低泛化和稳定性差等问题,仍未得到很好的解决,通过研究发现作为机器学习方法之一的迁移学习所具有的特性恰好可以提高导航的迁移性,因此将迁移学习运用到视觉导航中将会是提高导航效率的有效方法。随着导航的继续发展,导航的运用必然更为广泛,因此,进
“双减”作为新时期基础教育领域一场深层次的教育变革,是全面落实立德树人根本任务的重要举措,其根本指向是进一步把准培养社会主义建设者和接班人的教育方向,构建科学健康的高质量教育治理体系和基础教育发展生态。在“双减”背景下构建高质量教育治理体系,是新时期区域教育发展改革面临的一项重大课题,也是区域教育质量进一步提升的关键和核心所在。具体到实践中,该如何推进“双减”政策落实并取得成效?笔者认为应做