【摘 要】
:
生物多样性评估对于生态保护来说仍然是一个重大挑战,传统的评估方法代价昂贵且适用条件有限。考虑到声信号在生物交流之间广泛存在,被动声学监测成为了监测物种多样性的一种有效便捷的手段。鸟类作为对环境变化极为敏感的环境指示生物,成为被动声学监测的首要研究对象。但是不断增加的声学监测数据容量使人工分析或自动识别鸟类物种变得愈发困难。近年来生态学研究人员提出了声学指数,该指数不针对单个生物,而是着眼于生物群落
论文部分内容阅读
生物多样性评估对于生态保护来说仍然是一个重大挑战,传统的评估方法代价昂贵且适用条件有限。考虑到声信号在生物交流之间广泛存在,被动声学监测成为了监测物种多样性的一种有效便捷的手段。鸟类作为对环境变化极为敏感的环境指示生物,成为被动声学监测的首要研究对象。但是不断增加的声学监测数据容量使人工分析或自动识别鸟类物种变得愈发困难。近年来生态学研究人员提出了声学指数,该指数不针对单个生物,而是着眼于生物群落,从声学复杂度的角度能够快速评估物种丰富度水平。因此,声学指数作为快速生物多样性评估的重要工具得到了广泛应用。针对上述现状,本文重点开展了面向野外鸟类鸣叫声的声学指数评估性能分析,针对采用麦克风阵列在鄱阳湖南矶山湿地的野外实采数据研究了同步标定语音信号分离方法,进而针对单纯的鸟鸣声监测数据开展了声学指数随时间、天气以及鸣叫行为的相关分析。具体而言,首先使用来自Xeno-canto野外鸟声数据库的鸟声数据设计了三个控制实验,客观衡量不同的鸣叫类型、鸣叫频度和鸣叫强度对声学指数与鸟类物种丰富度相关性的影响。在实验中,精确控制了上述鸣声条件以及鸟类物种数量。实验结果表明声多样性指数(ADI)在评估鸟类物种丰富度时表现出比其它声学指数更好的稳健性,且与物种丰富度中度相关。同时,详细地分析了在不同信噪比(SNR)下阈值对ADI结果的影响。然后利用鄱阳湖南矶山湿地采集的野外鸟类连续监测数据评估了声学指数在复杂声学环境下的性能。在进行野外采集时,为了及时明确鸣叫个体,鸟类学者采用现场同步语音标定的方式,标定鸟类物种和鸟类行为等信息。由于混杂在鸟鸣声信号中的语音标定信号会导致声学指数的计算有偏差,因此利用麦克风阵列的空间滤波技术分离出语音标定信号,从而得到较为纯净的鸟鸣声监测数据。针对上述数据,分别研究了声学指数结果的日周期变化、声学指数结果与天气的关系以及与鸣叫行为的关系。实验结果表明,ADI可以清晰地反映湿地鸟类复杂声学活动的变化,但是在大雨环境下会失效,并且鸣叫行为的变化会对声学指数产生影响。论文研究内容对基于声学指数的快速生物多样性评估提供了良好支撑,在生态文明建设领域具有较大的应用价值。
其他文献
红外偏振探测作为新型探测手段,能够比传统红外探测提供更多目标信息。本文从目标的传热特性和偏振特性出发,考虑材料表面微元面起伏阴影遮效果等因素,建立了复杂目标表面红外偏振计算模型。利用该模型计算不同入射条件下复杂目标表面的偏振分布,分析模型中各种参数对偏振度的影响;在此基础上考虑大气散射对目标表面红外偏振的影响,计算并讨论了大气背景下目标表面的红外偏振分布。研究结果表明:目标表面温度通过影响自身红外
本文以LTE信号为外辐射源信号开展地面无源探测系统用于探测低慢小目标的关键技术研究,主要围绕无源探测单目标、多目标检测、直达波与多径杂波干扰抑制方法和无源定位方法三个方面开展深入的分析和研究。主要研究内容概括如下:(1)分析了LTE信号特性和模糊函数,说明LTE信号相较其它常用外辐射源信号的优势所在;建立了基于LTE的地面无源探测模型,根据探测模型计算相关参数,对最大可探测距离进行了分析;利用FE
“低小慢”目标具有雷达散射截面积小、多普勒特征不明显以及低空活动的特点,为了实现对其正常的检测与跟踪,需降低相应的门限,同时大量的环境杂波与干扰目标也会进入雷达数据处理系统,使得需要计算的数据量大幅增加,因此对雷达数据处理系统的实时性、稳定性提出了更高的要求。本文研究了基于脉冲多普勒体系“低小慢”雷达的雷达数据处理算法,提出了一种流水线式实时数据处理的方案用于雷达数据处理模块,并基于Python编
空间调制(Spatial modulation,SM)是一种具有绿色性、低成本和高能效的现代通信技术。SM通过配备极少的射频链数来实现通信,是空时码和贝尔实验室分层空时之外的第三种方法。SM除了发送传统的调制符号外,还充分利用了天线索引来提升通信速率和传输可靠性。SM可以降低硬件成本,提高系统的能效性。然而,由于无线通信的广播特性,合法接收机在通信时,易于遭受到非法用户的攻击或者窃听。因此,如何实
天线阵列技术是实现能量波束聚焦和空间扫描的技术手段,在雷达和通信系统中有着广泛的应用。基于相控阵(PA)的波束形成导向矢量是与角度有关的函数。近几年发展起来的频控阵(FDA)通过在发射阵元信号间设置远小于载频的线性频率偏移量,使其波束含相控阵波束中没有的距离信息且能实现自动扫描,但由于存在距离角度耦合以及周期性问题,影响了距离与角度信息的求解。本文在研究了阵列发射接收信号原理以及阵列波束形成技术的
主动式毫米波成像安检雷达作为目前最具发展潜力的人体安检技术,具有非常广阔的应用前景。采用宽带信号作为安检雷达的发射信号,可以有效提高其成像精度。此外,回波信号的采集精度以及数据传输存储过程的准确性对成像效果也至关重要。本文以电科某所的新型毫米波安检雷达为项目背景,设计并实现了其中频信号产生、采集与传输系统。论文主要工作和贡献如下:系统方案设计与信号产生算法推导仿真。本文首先基于安检雷达信号产生、采
采用数字波束形成技术的数字阵列天线,可以同时形成多个方向图特性独立控制的数字波束,并具备空域自适应干扰抑制和高精度角度估计等能力,因此已经得到较为广泛的应用。现有的数字波束形成系统主要是窄带系统。随着实际应用对雷达距离分辨率要求的不断提高,信号带宽不断增大,宽带数字波束形成系统是未来数字阵列雷达的发展趋势。本文以某48通道子阵宽带数字阵列雷达系统研制为背景,从模块化、标准化和可扩展性出发,提出了一
光学玻璃作为大功率激光光学系统的核心组成部分,极易在大功率激光辐照下产生不均匀的应力,影响光束质量。本论文针对大功率激光致玻璃的热力效应,建立了玻璃应力的在线实时快速测量系统,对于解决因玻璃应力所导致的光束质量变差等问题,具有重要应用价值。本研究首先建立了大功率连续激光辐照下光学玻璃应力的物理模型,利用有限元软件COMSOL建立了激光辐照玻璃的二维轴对称模型,通过仿真分析得到了玻璃的温度分布和应力
目前随着半导体技术的发展,各种封装技术不断涌现。系统级封装技术(SiP)凭借高集成的特点以及在与其他工艺结合时的便利性在一众封装技术中脱颖而出,在实现设备的多功能化以及小型化方面有很大建树。与传统的2D封装相比,3D的系统级封装技术提高了互连密度,拥有更好的信号传输性能以及芯片工作性能。针对如何将3D系统级封装技术应用于射频收发前端的问题,本文对相关技术进行了研究。文中首先对收发机的结构做了探讨研
随着现代通信技术的飞速发展,通讯设备的集成度也在日渐提高。通信射频前端系统对微波器件的高性能、小型化、一体化设计提出了更高的要求。在此背景下,对通信系统中的关键器件微波双工器开展高性能、小型化研究具有重要的意义。传统形式的金属腔体双工器因其较大的电路体积通常制约了射频系统的高度集成,迫切需要实现双工器的高性能、小型化设计;近年来,得益于材料研制技术的不断提高,陶瓷介质材料具备了较高的品质因数、极低