【摘 要】
:
近几十年来,电信、雷达系统和无线传输的飞速发展给周围环境带来了严重的电磁波干扰污染。使用电磁波吸收材料是目前防范电磁波干扰最直接有效的方法。其中,碳化硅(SiC)具有不错的化学电阻性、卓越的机械性能、导热性能,特别是在极端条件下的应用,被证明是一种很有前途的电磁吸收材料。而单一的碳化硅不能满足日益增长的吸波材料高性能的需求,对碳化硅进行纳米化同时和其他吸波材料进行复合来提升其吸波性能成为了一个重要
论文部分内容阅读
近几十年来,电信、雷达系统和无线传输的飞速发展给周围环境带来了严重的电磁波干扰污染。使用电磁波吸收材料是目前防范电磁波干扰最直接有效的方法。其中,碳化硅(SiC)具有不错的化学电阻性、卓越的机械性能、导热性能,特别是在极端条件下的应用,被证明是一种很有前途的电磁吸收材料。而单一的碳化硅不能满足日益增长的吸波材料高性能的需求,对碳化硅进行纳米化同时和其他吸波材料进行复合来提升其吸波性能成为了一个重要的研究方向。碳基材料有着质量轻、覆盖较薄且频带宽等优点,一直是吸波领域研究的重点。另一方面,石墨烯由于其高表面积,低密度,可调导电性和良好的化学稳定性而在微波吸收方面显示出了巨大的潜力,可以作为碳化硅的吸波增强剂。因此,本文以碳化硅为基底,研究垂直取向的三维石墨烯(VG)的制备和结构控制,探索出高效率、低成本和制备工艺简单的SiC/VG和SiC/C/VG复合吸波材料。主要实验内容如下:采用化学气相沉积(CVD)法,在碳化硅纳米颗粒表面生长垂直取向的石墨烯。主要探索了甲烷浓度、生长温度、反应时间的长短和碳化硅碳包覆对石墨烯的生长规律的作用。利用SEM、TEM、XRD、Raman等对复合粉体材料的物相、形貌结构进行研究。结果表明:当生长温度为1100℃时,在甲烷浓度为16.7%时生长的三维石墨烯形貌最佳。三维石墨烯的表面形貌受时间影响较大,时间低于4h时,石墨烯片尺寸较小,时间长于6 h时,碳化硅表面会形成片状的石墨。当碳化硅经过碳包覆处理后,碳层厚度约10nm,包覆的碳层(C)对三维石墨烯的生长不会产生太大影响。通过逐步优化制备条件,得出在生长温度为1100℃,甲烷浓度为16.7%,生长时间为4 h,且碳化硅纳米颗粒经过包碳处理为最佳生长条件。以最佳生长条件下生长的SiC/C/VG为研究对象,采用共沉淀法制备了Fe3O4含量不同的SiC/C/VG-Fe3O4复合材料。研究了SiC/VG、SiC/C/VG、SiC/C/VG-Fe3O4三种材料的电磁吸收特性。吸波测试结果表明,SiC/VG厚度为2.5 mm时,最小反射损耗在10 GHz处,约为-14 d B,低于-10 d B的频率范围约为3.2 GHz。SiC/C/VG的厚度为1.5 mm时,频率为3.2 GHz时,样品吸收的电磁波效率最高,最小反射损耗约为-24.7 d B,有效吸收带宽约为4.1 GHz。含60 wt.%Fe3O4的SiC/C/VG-Fe3O4复合材料有最小的反射损耗值,且当材料的厚度为2 mm时,样品对于频率为16.3GHz附近的电磁波吸收最多,最小RL值约为-45 d B,效吸收带宽约为3.3 GHz。
其他文献
随着我国对水环境氮污染治理力度不断加强,污水排放标准中对总氮的要求愈发严格,针对低碳氮比污水脱氮技术的研究已成为我国水处理的主要方向之一。单质硫自养反硝化填充床因结构简单、成本低等优势可用于小型污水处理设施中,但反硝化过程中碱度消耗大使应用受到限制。投加可溶性碳源可强化反硝化并提供碱度,但增加了运行管理的难度,而固体碳源能缓慢释放有机物质,还可为硫自养反硝化工艺提供碱度。因此,本课题以硫磺和固体碳
近年来,随着我国对地下空间的大量开发利用,工程渣土存量急剧增加,占建筑和拆除垃圾总量的近60%。目前,大部分的工程渣土被运输至填埋场填埋,其运输成本高且占用了大量的土地资源;仅有少部分工程渣土被综合再利用,但其存在利用率低以及制备的产品性能差等问题,导致难以大量且有效地再利用工程渣土。针对上述问题,本文提出了通过煅烧工程渣土制备水泥掺合料的高效再利用工程渣土方法。研究包括煅烧温度和保温时间在内的煅
当前,一些高校图书馆的内部环境忽视了使用者的心理需求和行为分析。面对该现象,本文试图基于环境心理学领域的折中模型理论,疏理出高校图书馆室内空间对使用者感知及行为的影响问题,从而构建一个探索空间环境、使用者感知、使用者行为间关系的评价体系,并将其应用于对深圳大学城图书馆室内空间的深入研究中。本文主要分为四个部分。首先,根据国内外相关文献,并结合实际案例调研与对使用者的问卷调查,总结出相关的空间指标(
随着我国土木工程和基础设施建设的高速发展,对高性能钢材的需求日益增加,近十年来,具有高强度、高韧性等优良性能的Q420qD成为交通土建建设中非常重要的钢种,受到投资方和设计人员的青睐。目前Q420qD越来越多的应用于海洋、工业大气或地下水侵蚀等复杂环境中,由此导致的钢材腐蚀造成了结构构件截面损失、性能退化和耐久性降低等问题,使得钢结构在服役期限内的腐蚀问题成为影响其全寿命耐久性设计的重要因素。同时
随着我国城镇化比例逐年提高,越来越多的基础设施工程开始建设,由此带来一些问题:如地下开挖产生的大量工程渣土、水泥大量消耗带来的碳排放等。目前,现有工程渣土大多以外运、填埋的方式处理,少部分通过综合利用的方式再利用。但目前工程渣土再利用的方法存在利用率低、产生二次废料、应用范围狭小等缺陷。本文通过对工程渣土进行机械和煅烧活化处理,并采用碱激发的方式制备地质聚合物。该方法制备工艺简单,无需额外掺入水泥
微塑料是一种新型污染物,其行为和危害是目前的研究热点。微塑料吸附重金属后经食物链进入生物体,并在胃肠环境中解吸,对人体存在潜在危害。为了确定其对人体的危害,首先需要明确环境中微塑料吸附重金属的主要种类、浓度、及机理;重金属的脱附条件、种类、程度等。本论文主要探讨不同老化方式对典型微塑料(聚丙烯PP、聚乙烯PE、聚酰胺PA)吸附Cu2+、Pb2+造成的影响;并初步探讨了吸附重金属的微塑料在模拟胃肠环
纤维增强复合材料(FRP)作为一种新型的增强加固材料,由于其强度高、质量轻、防腐蚀、耐疲劳、与混凝土粘结性能好以及便于施工等诸多优点,在混凝土结构修复加固领域得到了广泛的应用。近年来,随着人工智能(AI)的逐渐兴起,机器学习(ML)作为实现AI的一种途径,在水利、建筑等各行各业也得到了长足的发展。本文首先简单介绍了ML的基本原理,并通过对ML在混凝土结构工程中应用的系统回顾与总结,指出了传统试验和
动力非线性分析方法存在地震波筛选影响大和计算耗时的不足,因此静力非线性分析方法成为目前抗震性能评估的主流方法之一。本文以基于静力非线性分析方法的地震作用模拟为出发点,立足于地震动频谱、持时和幅值三大特性,提出一种基于多阶段模态荷载组合的标准地震作用。基于多阶段模态荷载组合更新模式的理论研究,建立多阶段循环往复加载模式,并拓展到不同性能需求下结构抗震性能评估,实现静力地震作用模拟的标准化。本文解决地
透水混凝土具备多孔结构,因而具有透水、透气、降噪等优点。但其耐久性能令人担忧,长期使用后,其孔隙很容易被堵塞,若缺少适当的维护,其透水性能会不断劣化甚至丧失。在寒冷地区使用时,透水混凝土因其连通多孔结构,雨雪会直接进入其内部,使其容易发生冻融破坏,当采用再生骨料时,由于再生骨料内部存在损伤,透水混凝的抗冻性能会进一步降低。采用再生骨料透水混凝土铺设的路面,会承受循环荷载作用,易发生疲劳破坏,但目前