论文部分内容阅读
本文围绕基于主动制动的车辆稳定性控制系统开发研究这一主题,在借鉴国内外研究成果的基础上,就车辆稳定性控制系统建模、车辆稳定性控制的力学原理分析、控制算法设计、控制系统开发方法、车辆稳定性控制系统实车试验等方面进行了研究。基于主动制动的车辆稳定性控制系统是通过汽车液压制动系统的主动制动实时调整车辆的运行状态,使车辆能够按照驾驶员的意图行驶,防止车辆失稳的汽车主动安全控制技术,是当前国际上汽车主动安全领域的研究热点。随着控制技术的发展和系统成本的降低,车辆稳定性控制系统将很有可能全面替代ABS成为现代汽车的标准配置。在国外,最近几年该类车辆稳定性控制得到了快速地发展,已经开始在中、高级轿车上大量装备;而我国在此领域的研究才刚刚起步,仅有吉林大学、清华大学、北京理工大学、中国重汽集团等少数大学及科研单位进行了控制方法的仿真研究,且研究不够深入。因此开展车辆稳定性控制系统实车开发研究对我们来说具有重要的现实意义。车辆稳定性控制系统开发研究涉及到机械、电子、液压、车辆建模、软硬件的研制、人的驾驶行为,以及最终的实车试验验证等许多方面。针对汽车主动安全控制系统传统开发方法所存在的开发周期长,实车试验耗时耗财且覆盖率低,试验事故易发的缺点,本文系统的提出了基于模型的设计开发方法,并应用到车辆稳定性控制系统实车开发中。该设计开发涵盖了控制系统概念设计、系统建模、系统离线仿真、代码自动生成、硬件在环实时仿真以及最终产品试验等开发过程。基于此设计开发思想,本文在以下几个方面开展了工作:首先,本文第1、2章对车辆稳定性控制的组成、功能以及工作原理进行了论述,对各种运行工况进行详细分析,并建立了既能反映所研究问题的本质,又能满足实时仿真需要的车辆稳定性控制系统的动力学系统模型。动力学模型是基于模型设计开发最重要的组成部分,直接关系到控制器的开发效率和精度,主要包括整车模型,轮胎模型,控制器模型,液压系统模型以及制动器模型。为了验证动力学系统模型的有效性和准确性,对仿真结果与实车试验结果进行了比较。结果表明文中建立的动力学系统模型理论上是正确的,满足实时仿真的精度要求。接着,第3章就基于模型的设计方法在车辆稳定性控制系统实车开发中的应用进行了详细论述。以模型设计方法为指导,以VSC系统实车开发为目标,从仿真、软硬件开发、模块测试和实车试验等方面详细论述了VSC系统设计和开发的全过程。在车辆系统理论建模的基础上,编制了车辆VSC系统仿真模型;根据仿真测试台架建设的需要,设计了接口设备,驱动电路和电气系统;完成了dSPACE控制原型实车试验、ECU原代码自动生成与硬件开发、硬件在环测试、标定以及实车试验。第4章提出了基于主动制动产生直接横摆力矩的车辆稳定性控制算法。它根据横摆角速度和质心侧偏角误差,采用模糊鲁棒控制方法进行汽车横摆力矩的决策,并根据轮胎工作点信息把决策得到的汽车横摆力矩合理分配到四个车轮上,通过压力调节来实现所决策的汽车横摆力矩。在综合前人研究成果的基础上提出了汽车运行状态综合估计法,并验证了其有效性。此外,本章还就VSC系统的失效模式分析、传感器失效识别与处理方法及其在VSC实车开发中的应用进行了初步探讨。最终的仿真和实车试验结果表明文中设计的车辆稳定性控制系统,使车辆在高速变道和转向时能够迅速、准确、安全地按照驾驶员的意图行驶,且在道路条件和行驶条件改变时具有较强的适应性和鲁棒性。最后,本文第5章详细论述了开发过程中涉及的仿真测试方案、控制原型试验、实车试验以及各阶段试验结果。利用计算机实时仿真技术和虚拟现实技术搭建了人与硬件在环仿真试验台,为车辆稳定性控制的理论研究和系统调试标定提供了平台。基于模型的设计开发方法在车辆稳定性控制系统实车开发中的成功应用,有力地证明了本文的研究工作使在较少的前期投入和较短时期内开发出合格的车辆稳定性控制系统成为可能,为我国汽车电子技术进步和企业进行汽车电子控制系统产品的自主开发,提供了有价值的帮助和重要的启示。