论文部分内容阅读
IC制造业是高科技产业的代表,受到世界各国日益重视,其核心指标是光刻机的线宽和产片率。目前,随着这两项指标的提高,超精密定位技术正向高精度、高加速度和大行程方向发展。音圈电机(Voice Coil Motor,VCM)是一种基于洛伦兹力原理设计的直线电机,其具有结构简单、体积小、加速度高和响应快等特点,广泛应用于超精密定位系统中。为了实现音圈电机超精密定位运动控制,本文分别从音圈电机数学模型、高精度功率变换器和超精密定位运动控制策略三个方面展开研究。为了建立高频运动下音圈电机精确数学模型,分别考虑空气阻尼、电涡流阻尼和弹性刚度特性对定位精度的影响。重点研究音圈电机在高频运动中存在的迟滞特性,并分析其产生机理和影响因素。通过扫描实验得出结论即迟滞特性与运动频率和运动行程密切相关。与此同时,分析电涡流阻尼力产生的原因及影响因素。在两种不同材料定子的条件下,通过音圈电机自由振荡实验,准确辨识空气阻尼系数和电涡流阻尼系数。除此之外,测试音圈电机的机械谐振频率,设计陷波器消除机械谐振峰。在响应时间、定位精度和效率都要求极高的光刻机运动控制系统中,音圈电机功率变换器必须同时具备高功率、高精度和高带宽等特性。为了解决传统功率变换器高功率和高精度矛盾问题,本文提出一种开关线性串联混合功率放大器,其中开关功率变换器采用不对称级联H桥七电平拓扑结构,多频率载波PWM调制方法有效解决了不对称级联H桥七电平功率变换器的电流倒灌问题。同时,推导不对称级联H桥功率变换器输出电压谐波和电流纹波表达式,设计LCCR低通滤波器滤除电压谐波和电流纹波。基于线性功率放大器的电压闭环控制用来补偿开关功率变换器所产生的电压误差,为了快速和准确补偿其电压误差,采用双PI控制器,并以模拟电路方式实现。最终,通过直流和交流实验验证了开关线性混合功率变换器的有效性,其性能指标,功率:750W;电流峰值:10A;电流纹波:1.2mA;电压THD:2.4%(250Hz),实验结果表明开关线性混合功率变换器同时具有高功率、高精度和低失真度等特点。在光刻机超精密定位运动控制系统中,音圈电机运动工况主要包括高精度轨迹跟踪运动和高精度点对点定位运动,针对不同运动工况和控制要求,采用不同控制策略。在高精度轨迹跟踪运动控制中,5阶S型曲线作为位置指令信号,自抗扰控制(Active Disturbance Rejection Control,ADRC)策略作为位置环的控制算法。仿真结果表明,与传统PID控制算法相比,自抗扰控制策略具有强鲁棒性和高跟踪精度。在高精度点对点定位运动控制中,提出一种改进式复合非线性反馈控制策略(Composite Nonlinear Feedback,CNF),将扩张状态观测器和积分器加入传统复合非线性控制策略中,仿真结果表明改进式CNF控制算法保留高动态和低超调等优点,同时提高了该算法的稳态精度和抗扰性能。为了验证音圈电机高精度点对点定位和高精度轨迹跟踪运动性能,搭建了音圈电机超精密定位实验平台,分别在单轴空载和多轴带负载的情况下进行实验测试,其中在单轴空载实验中,音圈电机在±2mm行程范围之内,实现了1μm的定位精度;在多轴带负载实验中,音圈电机在500μm行程范围之内,实现了0.4μm的定位精度。正弦信号和5阶S型信号作为高精度轨迹跟踪实验位置指令信号,通过实验测试得出位置环带宽:10Hz。