论文部分内容阅读
芳纶纤维、高强聚乙烯纤维都属于高性能纤维,目前采用两种纤维原料来织造三维立体织物,与剪切增稠液(STF)复合制备抗冲击复合材料的研究还很少。本课题以芳纶、高强聚乙烯两种高性能纤维作为原料,开发了双层间隔、三层间隔及三角形截面中空三种结构的立体织物,并对织物表面进行硅烷偶联剂改性处理后,最后与剪切增稠液(STF)进行复合,形成了芳纶-高强聚乙烯抗冲击复合材料。
选用1670dtex的芳纶及高强聚乙烯纤维,单层经向紧度为33%,纬向紧度为25%,英制筘号为20,在实验室前后两台小样织机,成功织造了双层间隔织物、三层间隔织物及三角形截面中空织物三种不同结构的织物。
采用硅烷偶联剂对芳纶纤维、高强聚乙烯纤维表面进行了改性,通过单因素分析法,得到两种纤维处理的最佳方案,即硅烷偶联剂的浓度为5%,处理温度为62.5℃,处理时间为5h。利用最佳方案对芳纶和高强聚乙烯纤维进行处理,通过扫描电镜和纤维接触角测量仪对比两种纤维改性前后表面结构及浸润性的变化,结果表明:芳纶纤维经处理后,纤维表面纵向上出现一些刻痕且表面粘附一些物质;而高强聚乙烯纤维经处理后,其表面的凹槽更多、更深且更加规则整齐,同时又存在明显的纵向刻痕,两者表面的纤维粗糙度都有所增加,且其浸润性都有不同程度的提高。
以纳米SiO2粒子作为分散相,聚乙二醇400(PEG400)作为分散介质,通过机械搅拌、超声分散和机械振荡共同作用配置了9%、12%、15%、17%、20%五种不同浓度的剪切增稠液(STF),研究发现不同分散相粒子浓度、不同分子量的分散介质及温度的变化对分散体系流变性能均有不同程度的影响,并制得剪切增稠效果良好的STF体系。
采用万能材料试验机对未经过STF处理的织物与STF柔性复合材料的拉伸性能进行了测试与分析,得到以下结论:对于双层间隔结构来说,经STF处理的织物比未经STF处理的织物经向平均抗拉强度增加了82.254MPa,纬向平均抗拉强度增加了106.064MPa;对于三层间隔结构来说,经STF处理的织物比未经STF处理的织物经向平均抗拉强度增加了92.322MPa,纬向平均抗拉强度增加了74.352MPa;对于三角形截面中空结构来说,经STF处理的织物比未经STF处理的织物经向平均抗拉强度增加了61.064MPa,纬向平均抗拉强度增加了41.174MPa;同时自制落锤冲击实验装置对未经STF处理的三种不同结构织物及经STF处理后的柔性复合材料动态防刺冲击性能进行了测试与分析,实验结果表明:经过STF处理后的织物比未经STF处理的织物的抗低速冲击能力好,主要是当带有尖的重锤落到织物表面后,剪切增稠液发生剪切增稠现象,使得纤维束间及纤维丝间的摩擦力增加,从而提高了其动态防刺冲击性能。
选用1670dtex的芳纶及高强聚乙烯纤维,单层经向紧度为33%,纬向紧度为25%,英制筘号为20,在实验室前后两台小样织机,成功织造了双层间隔织物、三层间隔织物及三角形截面中空织物三种不同结构的织物。
采用硅烷偶联剂对芳纶纤维、高强聚乙烯纤维表面进行了改性,通过单因素分析法,得到两种纤维处理的最佳方案,即硅烷偶联剂的浓度为5%,处理温度为62.5℃,处理时间为5h。利用最佳方案对芳纶和高强聚乙烯纤维进行处理,通过扫描电镜和纤维接触角测量仪对比两种纤维改性前后表面结构及浸润性的变化,结果表明:芳纶纤维经处理后,纤维表面纵向上出现一些刻痕且表面粘附一些物质;而高强聚乙烯纤维经处理后,其表面的凹槽更多、更深且更加规则整齐,同时又存在明显的纵向刻痕,两者表面的纤维粗糙度都有所增加,且其浸润性都有不同程度的提高。
以纳米SiO2粒子作为分散相,聚乙二醇400(PEG400)作为分散介质,通过机械搅拌、超声分散和机械振荡共同作用配置了9%、12%、15%、17%、20%五种不同浓度的剪切增稠液(STF),研究发现不同分散相粒子浓度、不同分子量的分散介质及温度的变化对分散体系流变性能均有不同程度的影响,并制得剪切增稠效果良好的STF体系。
采用万能材料试验机对未经过STF处理的织物与STF柔性复合材料的拉伸性能进行了测试与分析,得到以下结论:对于双层间隔结构来说,经STF处理的织物比未经STF处理的织物经向平均抗拉强度增加了82.254MPa,纬向平均抗拉强度增加了106.064MPa;对于三层间隔结构来说,经STF处理的织物比未经STF处理的织物经向平均抗拉强度增加了92.322MPa,纬向平均抗拉强度增加了74.352MPa;对于三角形截面中空结构来说,经STF处理的织物比未经STF处理的织物经向平均抗拉强度增加了61.064MPa,纬向平均抗拉强度增加了41.174MPa;同时自制落锤冲击实验装置对未经STF处理的三种不同结构织物及经STF处理后的柔性复合材料动态防刺冲击性能进行了测试与分析,实验结果表明:经过STF处理后的织物比未经STF处理的织物的抗低速冲击能力好,主要是当带有尖的重锤落到织物表面后,剪切增稠液发生剪切增稠现象,使得纤维束间及纤维丝间的摩擦力增加,从而提高了其动态防刺冲击性能。