厄米与非厄米电路系统中的拓扑绝缘体

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:yijixu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
与普通绝缘体不同,拓扑绝缘体的边界上存在受体拓扑保护的边界态。这种边界态对结构参数的平缓变化不敏感,在信号的无损传输方面具有潜在的应用价值。除了在量子系统中实现电子的拓扑绝缘体,研究者们也试图在各种经典系统中寻找和实现拓扑绝缘体,包括光学、声学、机械、电路系统等等。其中,电路系统是最近几年才用于拓扑态的研究,并逐渐形成了拓扑电路这一概念。拓扑电路主要基于共振电路网络建立的,所需的电子元件简单;并且电路结构可灵活设计,方便集成和批量加工生产。这些优势使得电路系统为拓扑态的研究提供了一个很好的实验平台。本论文主要研究若干电路系统中的拓扑绝缘体,包括厄米和非厄米的情况。具体研究内容为Su-Schrieffer-Heeger耦合电路连续态中的束缚态、Kagome电路中的二阶角态以及非厄米诱导的二阶拓扑电路。在第二章,我们构建了Su-Schrieffer-Heeger耦合电路,实验上观测到了带隙中的束缚态和连续态中的束缚态。该电路的哈密顿量可以分成两部分,一部分对应的能带是拓扑的,另一部分则是平庸的;拓扑和平庸的能带均可以通过不同的电子元件进行独立的调节。在开边界情况下,拓扑带隙中会出现受拓扑保护的束缚态。通过调节参数可移动平庸的体能带。当该束缚态恰好也位于平庸体能带的带隙中,则是带隙中的束缚态;当该束缚态落到平庸的体能带中,即可获得连续态中的束缚态。连续态中的束缚态基本不受体态的影响,依然可以保持很好的局域性。在第三章,我们构建了Kagome电路,实现了二维二阶拓扑绝缘体,实验上观测到了受拓扑保护的零维角态。在厄米情况下,我们在三角形电路中预测并实验证实了零维角态的存在,随后证明了角态是受拓扑保护的,对弱无序具有鲁棒性;在平行四边形电路中,我们研究了角态与角几何构型的关系,证实了只有通过瓦尼尔心(Wannier center)的角才会存在角态。通过加入串联电阻,研究了非厄米对角态的影响。结果表明,非厄米只会导致角态含有一定的衰减,并不影响其存在性;此外,不同位置串联的电阻对角态阻抗的影响差异巨大。在第四章,我们利用损耗实现了非厄米的二维二阶拓扑电路,实验上观测到了一维的边界态和零维的角态。当电路中没有电阻时,体带隙是关闭的;当在不同位置引入并联电阻后,体能带可以打开带隙,并产生非平庸的二阶拓扑,从而形成非厄米二阶拓扑电路。该电路存在有带隙的一维边界态和带隙中的零维角态,并被我们实验证实。因为该二阶拓扑电路是由损耗电阻诱导的,所以它的角态具有一定的衰减;但是衰减并不影响其拓扑特性。我们的系统提供了一个理想的平台来探索非厄米诱导的拓扑相。
其他文献
物理上,自由空间中声源辐射的声波自由传输,室内环境中声源辐射的声波还受到室内边界的反射等作用,形成复杂的物理声场。倾听者进入声场后,其自身的生理结构也会对声波产生散射和衍射作用。最后,双耳接收到的是经过环境与生理结构作用后的声压信号。无论物理声场如何复杂,听觉感知都是由听觉系统对双耳声压信号进行识别与分析而产生的。听觉系统对声音空间属性的主观感知是听觉感知的一种重要组成部分,称为空间听觉。声音的空
目前,园区网络的三级架构模型已经无法满足云计算网络发展的需求。分布式应用的数据处理需求,使数据中心网络的带宽瓶颈从南北向变成东西向,采用基于软件定义网络(Software Defined Network,SDN)的云计算网络模型可以满足当前大数据数据交换的网络需求。该模型采用Clos硬件架构,基于软件实现了SDN控制器与Neutron网络模块集成。笔者探讨基于SDN的云计算网络模型,以期为相关研究
随着大尺寸平板显示器向8K及以上高分辨率方向的快速发展,超高画质的需求对显示器的时序控制器T-CON和源极驱动器SD之间的高速传输提出了极大的挑战。8K数据的大传输量和高传输速率,使得大尺寸显示屏的负载和寄生效应对信号传输路径的影响十分突出,导致信号传输系统的不稳定和传输信号质量的恶化。为了解决8K显示面板的频率带宽和信号传输质量等问题,本专业博士学位论文提出了新型点对点高速信号传输技术,对传输协
微尺寸LED(Micro LED)器件及其阵列因其功耗低、寿命长、响应时间短等显著特点,在显示、通信、医学治疗等领域,例如显示器的背光单元、自发射显示单元、以及可见光通信系统的发射端光源等具有广泛的应用潜力。为此,亟需设计和制备满足需求的高效高性能的微尺寸LED器件。针对微尺寸LED器件发光效率、-3 d B带宽特性的影响因素,本论文从提升发光效率的角度着重在器件结构、侧壁结构及其集成上开展了仿真
金属氧化物(Metal Oxide,MO)薄膜晶体管(Thin Film Transistor,TFT)因具有以下优势:1)载流子迁移率适中;2)大面积均匀性好;3)工艺制备温度低;4)可见光透过率高,被认为是下一代显示领域和新兴柔性应用中最有前景的新技术之一。然而,随着新型显示技术朝着大尺寸、超高清、高帧率和柔性应用等方向发展,TFT作为显示面板的构成要素,要求其必须往缩小尺寸和减小沟道长度的方
由于固体燃料成分复杂,其燃烧会经历一系列物理化学过程,属于非均相燃烧体系。深入理解燃料燃烧特性及燃烧产物的形成及转化过程是提高能源利用效率及控制污染物生成的基础。在高温条件下,固体燃料的燃烧反应很快,目前的燃烧模型仍存在适用范围小、经验参数选取困难等问题,燃烧特性及产物的实验研究是发展和优化燃烧模型的重要依据。对于高温复杂环境下的原位快速测量技术的发展为燃烧机理研究提供了新的方向。因此,本文致力于
河南省第十一次党代会提出确保高质量建设现代化河南、确保高水平实现现代化河南的奋斗目标,并将实施以人为核心的新型城镇化战略作为"十大战略"之一,这是新时期破解发展矛盾、促进城乡融合、激发发展动力、推动高质量发展的必然选择。为此,要遵循城镇化发展规律,凝聚各方力量,创新方式方法,着力优化城镇化空间布局,推动中心城市增强区域增长极和动力源功能,促进县域经济发展,加快形成以中原城市群为主体、大中小城市和小
超薄高密度柔性集成电路封装基板(FICS)在柔性电路板基础之上,往更高集成密度、更轻薄、更易弯曲扭转的方向发展。随着IC行业进入7-14纳米制程,超薄高密度FICS也进入2m以下制程,对材料和制造过程的品质控制性能要求也不断提升。在FICS表面缺陷检测过程中,仅靠基板传统检测方法,已无法达到工业生产的精度要求。在FICS图像预处理环节中,存在去除噪音的同时去除原有图像的纹理信息等问题。对于高倍显微
神经系统主要包括中枢神经系统和周围神经系统两部分,神经系统主要通过复杂的神经网络结构传输电信号来协调身体各部位的活动。无论是中枢神经系统还是周围神经系统损伤都会破坏脑组织与目标组织之间的电信号传导,导致患者功能的丧失。因此恢复神经组织电信号传导功能,重新与远端目标组织建立信号传输,是神经损伤修复的关键。而目前包括手术治疗、药物治疗、细胞治疗、外泌体治疗及组织工程支架治疗等策略均忽略了神经电信号传导
2.0μm单频光纤激光在高分辨率光谱学、非线性光学、激光雷达和引力波探测等领域拥有广阔的应用前景。2.0μm单频激光对人眼安全,可应用于大气中的相干探测和空间通信领域。相比于常见的1.0μm单频光纤激光,2.0μm单频光纤激光拥有更高的非线性效应阈值,在单频光纤激光输出功率提升方面更具发展潜力。此外,高功率单频光纤激光可应用于长距离相干探测,且其低噪声特性使得探测灵敏度更高。为了满足相关应用领域对