多通道精密同步任意波形合成模块设计与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:shaoshao137
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多通道任意波形发生器可以输出多路具有可调节相位关系的复杂信号,在电子测试领域中有着广泛的应用。随着被测对象复杂度的提高,输出通道间精密同步和定时偏差调节逐渐成为了多通道任意波形发生器研究的重点。多通道任意波形发生器一般由多通道任意波形合成模块和模拟通道组成,而对其同步指标的影响主要来源于任意波形合成模块。故本文对影响多通道同步的因素进行分析,研究了多通道同步的实现方法,完成了精密同步的四通道3GSPS任意波形合成模块的设计,其主要研究内容如下:1、多通道同步分析。介绍了直接波形合成技术原理并基于该结构建立了多通道任意波形合成模块模型,对模型中DAC部分、数据发生部分及触发部分同步影响因素及实现同步的条件进行具体分析。2、总体方案设计。结合本设计相关指标对DAC进行选型分析,并根据B9129相关数据及时钟需求得到调节DCO时钟实现同步的方案。通过分析得到“FPGA+DDR3 SDRAM”的数据发生方案,并对加入同步FIFO等实现数据同步的三种方案进行对比分析。结合指标对时钟产生方法对比得到DDS激励PLL的时钟产生方案和时钟分配芯片实现多路时钟“粗调+精调”的相位调节方案。3、模块硬件电路设计。根据总体设计方案选用了AD9952激励ADF4351方式产生所需的可变时钟,同时通过对相位噪声计算分析得到其具体设计参数,并对LMK01801实现相位调节的具体方法进行了设计及验证。对数据发生部分中各个模块进行了选型及外围电路设计,对调节DCO时钟实现DAC输出同步的具体流程进行说明。4、模块逻辑设计。介绍了以PCIe硬核为核心的控制接口和以AXI4总线为主体的互联接口相关设计。采用异步FIFO实现了以AXI DMA为核心的跨时钟域数据读写及描述符链生成,同时对描述符链的产生流程及具体指令解析进行了介绍。最终使用ODDR原语实现了波形数据发送端的设计,并对数据具体映射方式进行说明。通过测试,本文所设计的四通道任意波形合成模块的最大采样率为3GSPS,最大存储深度1GSa,其四个通道间同步精度满足100ps要求,对国内多通道任意波形合成发展有一定的推进作用。
其他文献
随着企业数据量的不断增长,企业开发应用架构向微服务架构演进,微服务架构将业务模块切分为应用服务,不同的应用服务间通过分布式事务保证数据的一致性。然而传统的分布式事务很难应用于微服务架构中,因此,研究基于微服务架构的分布式事务具有重要的意义。相比传统关系型数据库,MongoDB的复制集、分片集群的独特设计,使其具有较好的扩展性和可用性。然而MongoDB在一次全局事务处理过程中,会长时间锁定资源,影
机动目标跟踪是雷达信号处理领域研究中的热点课题之一,随着各类目标的机动性不断增强,对目标进行实时有效的跟踪变得越来越困难。“迎头转尾追”是防空导弹作战过程中敌方目标典型的一种逃逸方式,导致导引头无法连续稳定跟踪目标。本论文针对线性调频脉冲体制雷达导引头,对迎头转尾追空中目标开展回波建模仿真与跟踪方法研究。主要研究内容包括以下几部分:1、雷达基本原理和信号处理方法。从雷达的分类、组成以及常用测量参数
二十一世纪以来,随着集成电路的迅速发展以及其代工厂工艺节点的不断缩小,我们的工作和生活早已与集成电路密不可分。5G、自动驾驶、工业控制、物联网等新兴产业更是依赖于集成电路,而其中微控制单元(MCU)则是必不可少的核心模块之一。目前绝大多数MCU产品都是基于ARM公司提供的CPU针对不同的应用场景进行设计,最为普遍的是八位和十六位的MCU,能够基本满足中低端的市场需求,但是在未来,高效、低功耗的三十
在比较高功率微波器件的效率时,常常会忽略聚焦系统所需的功率和能量,而这些能产生磁场的聚焦系统所消耗的能量,体积和重量往往都比高功率微波器件本身大,且在工程应用中变得越来越不实用。永磁聚焦系统在体积和重量方面仅为传统电容系统的五到十分之一,而且还有一个更加明显的优点是永磁聚焦系统不消耗任何功率,所以高功率微波器件做成永磁包装后,能够扩大其应用范围。本文对S波段相对论速调管永磁包装技术进行研究。根据本
在数字电路中,控制设备是整个设计的一个重要的环节。在现代化的设计中,一般都会选择采用微控制器(MCU)作为控制模块,并且也占有很大的市场分额。但目前国产的MCU竞争力稍显不足,对于MCU的深入研究也显得十分必要。本文主要内容为基于高层次设计的MCU的研究,使用更加抽象的硬件描述语言(CHISEL)与各种EDA工具的相互协同完成工作。目前,大部分的MCU都选用Cortex系列的芯片实现控制功能。但是
随着人工智能以及5G技术的快速发展,在智能驾驶中高级辅助驾驶系统(ADAS)应用研究也加速发展。智能传感器硬件平台和高性能决策算法是实现ADAS系统的重要组成部分。在汽车领域里,要达到车规级标准,满足安全性、可靠性、准确性,这对于合适的硬件和高性能算法的提出有着较高的要求。尽管毫米波雷达以及激光雷达在ADAS领域内得到广泛的应用,但是也存在成本高、缺乏辨识能力、视觉信息少等缺点。鉴于此,本文主要提
和传统的固体和气体激光器相比,光纤激光器具有光束质量好、体积小、转换效率高、散热效果好等优点。在近红外波段,光纤激光器和光纤拉曼激光器已经广泛应用于通信、工业、医疗国防等领域。在3μm波段应用同样广泛,但是在该波段短脉冲光纤激光器的发展还存在诸多问题以及空白需要探索。本文围绕3μm波段锁模和增益调制两种技术手段,实现了稀土掺杂离子氟化物脉冲光纤激光器。首先,本文介绍了3μm波段光纤激光器的应用,叙
航空航天工程师我国未来发展方向之一,而航空航天对我国的发展有着不可缺少的促进作用,在如今生活的方方面面,中国人民也享受这航空航天技术发展所带来的便捷与高效。除了航空航天领域的发展,在数字化当下的今天,各种设备的的便捷化,简便化及其自动化都离不开集成电路领域的发展,电子芯片因为其快速的运转速度和其可靠的功能性,让集成电路被应用于如今几乎全部的领域内。近年来,电子器件被越来越多的应用到太空之中,对于目
随着移动通信服务的重要性日益凸显,人们对在任何时间任意地点的在线服务具有了越来越强烈的需求。天地一体化网络融合了原来互相独立的地面通信网和卫星通信网,可以有效的满足人们在世界各地随时在线的需求。由于一体化网络需要传输各种不同的业务,传统的在同一物理网络上传输不同服务等级业务的方式造成很低的传输效率及很大的资源浪费。网络切片技术通过虚拟化技术实现在同一物理资源上创建不同的子网,子网中独立传输不同类型
锁相环已广泛应用于生成数模转换器,数字处理器以及高速链路中的各种时钟频率。它可以跟踪输入信号的频率和相位,并通过反馈分频器来实现频率的合成。在卫星通信和电子雷达应用中,S波段作为下传信号的重要频段,要保证其时钟源的宽调谐范围以及低锁定时间来达到频率扫描范围可控以及不同信道间的快速切换,同时优化其时钟源的非理想因素(如抖动与噪声)对整个系统也至关重要。本文瞄准国内市场中对S波段的超低噪声频率合成芯片