论文部分内容阅读
倒向随机微分方程(BSDE)的线性形式首先由Bismut(1973)在引入,1990年Pardoux & Peng(1990)研究了Lipschitz条件下非线性倒向随机微分方程解的存在唯一性定理。Duffle & Epstein(1992b)在研究随机微分效用过程中也独立地引进了一类倒向随机微分方程。倒向随机微分方程在随机控制、偏微分方程、数理金融、经济等领域都有着广泛的应用。 经典的期望是一个线性泛函,在线性期望和可加测度之间存在一一对应的关系。但是这种一一对应的关系在非线性情形下并不成立,一般地,给定一个非线性期望,我们仍然可以导出一个非可加概率测度,但是却存在无穷多的非线性期望满足这一关系。因此在非线性情况下,期望比非可加测度更具特征性。?用非可加测度定义了容度和Choquet期望,Choquet期望在统计、经济、金融和物理中有很多应用,但是它的缺点是很难定义条件Choquet期望。Peng(1997)通过一类特殊的倒向随机微分方程引入了一种非线性期望:g-期望。用g-期望可以很容易定义条件期望。不过g-期望是一种拟线性期望,也就是说,并不能包含完全非线性的情形。Peng(2005b)引入了一般的时间相容完全非线性期望和非线性马氏链,Peng(2006a,b)则提出G-期望的概念和理论。 Artzner,Delbaen,Eber & Heath(1997,1999)引入相容风险度量,作为一个公理化的工具量化金融头寸的风险。同在1997年,Peng(1997)引入了g-期望的概念。Follmer & Schied(2002a,b,c)和Frittelli & Rosazza Gianin(2002,2004)分别独立地研究了一般概率空间上的凸风险度量。动态风险度量也同样被提出,例如Cvitanic & Karatzas(1999)和Wang(1999)。Rosazza Gianin(2003)由g-期望引入一类动态风险度量,Jiang(2005b)做了进一步的研究,提出并证明了g-期望是相容风险度量或者凸风险度量的充分必要条件。Peng(2005b,2006a,b)研究的G-期望,G-布朗运动和相关Ito类型的随机微积分,可以应用于风险度量。 Peng(2004b,d,2005a)提出并研究了时间相容估价和g-估价的理论,证明了满足一定条件的时间相容估价足一个g-估价,也就是说,无论用什么模型或者机制进行估价,只要验证满足定理条件,那么这个估价背后其实都有一个BSDE,其生成函数g就是定价机制,解z是对冲策略。因此一个很有意义的反问题是:如果已知BSDE的