论文部分内容阅读
在农业现代化的大背景下,智能化温室进入了快速发展的轨道,目前已有不少专家学者提出了温室智能化的解决方案。但是现有的智能化温室或多或少的存在问题,成本高、操作复杂、不能实现智能化控制等,都限制着智能化温室大棚的普及。本设计根据现存温室大棚的缺点,提出了一种基于NB-IoT物联网的温室大棚监控系统。该系统采用NB-IoT窄带宽物联网技术、通信网络技术、新能源技术、Java编程语言技术、数据库技术和模糊控制等技术,实现了对温室大棚的智能化监控。该系统采集终端控制传感器采集温室中的温度、湿度、光照强度和二氧化碳浓度等环境信息,通过NB-IoT网络将数据传输给远程服务器并存储在数据库中。控制终端采用B/S结构开发的Web网页,调用远程服务器中的数据,以图表和数据的形式显示在网站页面中,温室管理员可通过PC或者移动端登录特定的网站,随时随地对温室大棚进行监控。本设计的监控系统与传统的温室监控系统相比,有以下几点优势:(1)采用窄带宽物联网技术,相较于传统Zigbee、蓝牙等物联网技术,覆盖范围更广,组网简单,功耗低,操作简单。NB-IoT模组选用支持TCP协议的WH-NB73模组,保证系统能够实现可靠的控制。(2)在保证温室大棚内温度和采光量的前提下,将温室大棚与太阳能结合,温室中的用电模块均可由光伏发电系统提供,使其更加节能环保。(3)根据光伏电池板发电时,随着自身温度升高导致发电效率降低的问题,本设计采用水循环的方式对光伏电池板进行主动降温提高系统发电量,同时循环后的水温度升高后可用于温室的灌溉,改变土壤湿度的同时提高了土壤温度,促进农作物的生长,避免了水资源的浪费。(4)在系统方面,本设计摈弃了现阶段物联网中使用较多的C/S结构,而采用B/S结构和Java-Web技术设计网站式系统。充分应用了SSH(Struts+Spring+Hibernate)框架、AJAX异步请求技术和JXLL/JFreechart技术,提高系统的实用性和舒适度,降低开发和维护成本,利于普及。(5)在控制方面,本设计根据温室中环境因素的特点,以土壤湿度为例,选择模糊控制算法对温室大棚进行自动控制。同时,还建立了ARIMA模型,利用温室内环境因素的历史数据,预测未来环境因素的变化趋势,为温室管的管理提供数据支撑。系统设计完成后,用现有的实验条件对各模块进行了测试,实验结果表明,系统设计可靠,能够正常运行,稳定性较高,具有实用意义。