论文部分内容阅读
传统的二维探测成像是采集场景信息的最常用办法,这种探测方法丢失了深度信息,无法获取场景中物体的真实距离,在此基础上发展而来的三维测量技术有效地弥补了这一不足。作为一种新兴的成像技术,基于单像素探测的关联计算成像方法因其以时间成本换取空间信息的特点,在极弱光场及宽光谱成像等领域具有很高的应用价值,将单像素成像技术应用于三维测量领域中,有效地拓宽了传统光学三维测量技术的应用场景。本论文首先介绍了光学三维成像技术的主要分类和基本原理,并重点讨论了基于条纹投影轮廓术的三维测量方法。作为当下应用最广泛的主动式三维测量方法,该技术具有系统简单、测量精度高、成像速度快、技术成熟的优点,傅里叶条纹轮廓术和相移相位测量术是其中最具代表性的两种测量方法。介绍了单像素成像三维测量技术的发展后,分别从理论和实验两方面介绍了条纹投影轮廓术与单像素成像方法结合的三维测量方式,证明了单像素三维成像技术在宽光谱成像方面的优势,并就测量的精度和稳定性进行了分析。基于傅里叶条纹轮廓术的红外单像素三维重构方法,采用红外光源进行主动扫描成像,采用傅里叶条纹轮廓术的相位提取办法获得折叠相位,使用相位解包算法获得绝对相位。建立起相机坐标系到世界坐标系的映射关系,获得绝对相位到距离信息的转化模型,计算得到待测场景中的深度信息分布,实现了一种设备简单、鲁棒性高的红外单像素三维测量系统模型。基于相移相位测量术的单像素三维测量方法,利用相移相位测量轮廓术的高精度和高稳定性优势,在一定程度上弥补了单像素成像分辨率较低的不足。实验中采用相移相位测量办法,在二维强度图中提取得到绝对相位,并近似地采用平行投影的相位高度映射模型,借助于棋盘格的标定办法完成了相位到真实距离的转化,并通过对标准具进行三维测量,分析了系统的测量精度和误差,最后讨论了限制系统精度的可能原因。本论文从理论和实验出发,将基于条纹投影的相位测量轮廓术与单像素成像技术相结合,拓宽了单像素三维成像的实现方法。基于傅里叶条纹轮廓术的单像素三维重构方法,验证了单像素三维成像技术在特殊波段的成像能力,为搭建低成本的宽波段三维器件提供了一种新思路。另外,首次将相移相位测量术应用到单像素三维成像中,实现了一种高精度和稳定性的单像素三维测量办法,为单像素三维成像技术的实用化提出了更多可能性。