【摘 要】
:
安全壳是防止放射性物质泄漏的最后一道屏障,除了抵御外部人为破坏和自然灾害外,还应执行外部撞击事件的防护等功能。目前,在役、在建或计划建设的各种堆型的核电机组,均设置有安全壳,主要执行防止放射性物质泄漏的功能,而防止外部撞击和在非人为干预情况下输出事故工况下的反应堆堆芯热量的功能,大部分核电机组的安全壳均不具备。AP1000非能动压水堆安全壳的设计可有效满足上述极端恶劣工况下的要求。AP1000钢制
论文部分内容阅读
安全壳是防止放射性物质泄漏的最后一道屏障,除了抵御外部人为破坏和自然灾害外,还应执行外部撞击事件的防护等功能。目前,在役、在建或计划建设的各种堆型的核电机组,均设置有安全壳,主要执行防止放射性物质泄漏的功能,而防止外部撞击和在非人为干预情况下输出事故工况下的反应堆堆芯热量的功能,大部分核电机组的安全壳均不具备。AP1000非能动压水堆安全壳的设计可有效满足上述极端恶劣工况下的要求。AP1000钢制安全壳是由安萨尔多公司设计、执行ASME标准、应用新材料建造的一种新型安全壳。本论文根据2001版2002增补的ASME B&PVC规范第III卷NE分卷,结合AP1000钢制安全壳的建造施工技术实践,从材料、壳体施工、闸门及贯穿件安装、气压试验等方面进行了系统性的分析和归纳,为我国钢制安全壳的建造工艺提供技术参考,为我国后续同类电站钢制安全壳的建造技术提供良好的借鉴。(1)在钢制安全壳材料成形过程中,需要确保材料在热成形工艺、焊接工艺、热处理工艺后,其仍具有较好的冲击韧性。钢制安全壳本体主要由板材通过成形工艺加工而成。在车间预制时,椭球形封头区板材首先在炉内加热至550℃-600℃范围内,再通过大型液压机和模具一次性轧制成形;筒体区板材,可在180℃-200℃范围内,辊轧成形。(2)对于壳体施工,需要确保其现场安装完成后满足ASME B&PVC第III卷NE分卷各类形位公差的要求。将轧制成形的板材加工至设计尺寸时,除了封头区的由2块板组成的第1圈外,其他的封头区的每一圈以及筒体区的每一圈,均应留一块板作为现场组装的调整板;每一块板材的坡口加工,不能按照平板对接焊缝的形式进行坡口加工,而应根据每一块板边缘的弧形曲率情况来加工坡口,防止焊接完成后在焊缝处形成扁平状的不连续曲率突变。(3)至于闸门及贯穿件施工,在闸门现场施工前,需要在筒体上进行实物模拟并进行开孔。设备闸门的开孔需考虑闸门插入板状态、筒体安装后的偏差、开孔后应力释放导致的变形等因素,不能仅通过模拟计算进行放线、开孔,最好是通过实物在地面进行放样划线、临时加固等辅助措施进行开孔,尽可能减少开孔尺寸误差,为插入板组对焊接创造条件。对于交叉施工较多的贯穿件,应与其他专业进行沟通,制定详细的施工逻辑。(4)在气压试验过程中,确保安全壳的结构完整性,并通过整体泄漏率试验确保安全壳能有效执行放射性物质包容的安全功能
其他文献
滚环扩增技术是近些年来发展起来的以环状DNA为模板,在引物、四种三磷酸核酸、DNA聚合酶作用下生成具有很多重复序列的单链DNA,利用此特点达到信号放大的作用,从而提高检测灵敏度。核酸适配体是能与特定靶标结合的一段DNA或RNA,具有高亲和性和高特异性,被广泛用于蛋白的分析检测、肿瘤的早期诊断以及靶向给药。分子信标(molecular beacon,MB)是一种荧光标记的呈发卡结构的寡核苷酸链,由茎
发展响应快速、灵敏度高、选择性好的比色传感器能够有效满足检测的即时化、便利化、可视化、精准化等各方面的需求,一直是分析化学领域研究的热点。金属纳米材料具有独特的结构和优越的光学、电学、磁学等性能,在传感技术中引入金属纳米材料为比色传感器的发展提供了新的思路和更为广阔的空间。本文以新型金属纳米材料独特的化学性质为核心,通过绿色、温和的水相方法合成具有优良化学性质的新型金属纳米探针用于特定目标物的高选
随着市场经济体制的建立和不断完善,中国企业组织体系趋于复杂化,管理结构与层次趋于系统化,诞生了越来越多的集团型企业。二十一世纪以来,我国医疗行业蓬勃发展,民营医疗集团也出现在人们的视野之中,在中国医疗行业中逐渐占有一席之地。与公立医院相比,民营医疗集团有其自身的成本消耗及收入来源,迅猛发展的背后,也必然存在着一定的隐患与风险。对于这类企业而言,如何避免隐患与风险,深化集团管控,已经成为了企业管理的
电热水器在现代社会家庭、旅馆、公寓、学校中的应用范围日益普遍,其带来的方便性越来越受重视,但与此同时,也带来了诸多的使用安全问题,造成了人身伤亡事故,给社会、家庭留下了不和谐因素,甚至是人间的悲剧。如何杜绝使用过程中的安全隐患是目前我们讨论的社会热点话题和急需解决的社会问题,以保障人身、财产安全。本研究拟采用理论分析、实地勘验调研及模型构建等方法针对电热水器工艺结构安全及司法鉴定支持开展研究,注重
近年来,随着我国医疗体制改革的推进,一大批私立医院涌现出来,打破了公立医院垄断医疗行业的格局,公立医院面临的竞争压力越来越大,与此同时,药品加成全面取消,医院收入明显减少。因此,控制医院成本成为公立医院提高竞争力的关键。但现阶段我国公立医院在成本核算方面尚存在不足之处,采用的成本核算方法不尽合理,同时也缺乏规范统一的成本核算体系,致使成本控制缺乏有力的数据支持。因此,使用一种更加合理、有效、规范化
随着工业化的快速发展,CO_2排放增加导致“温室效应”日益加剧,这已成为21世纪人类社会发展面临的共同课题和重大挑战。微藻具有生长速度快、固碳效率高等优点,利用微藻进行CO_2封存被认为是一种有希望的CO_2固定方法。小球藻作为我国第二大经济微藻,已实现户外大规模培养,具有生长速度快、培养工艺相对成熟等优点,具备了较好的规模化固碳养殖基础。但目前小球藻规模化培养过程中主要是使用乙酸或葡萄糖等有机碳
核电作为一种备受瞩目的清洁能源,在世界范围内广泛发展。在中国,核电的发展一直敏感而又广受期待。AP1000作为中美合作的第一个核电项目,美国西屋电气公司(Westinghouse Electric Corpy)研发的第三代核电技术,研发伊始即备受世界瞩目,其亮点包括:模块化的设计和建造技术、非能动的安全系统等。钢制安全壳作为AP1000非能动安全系统的重要组成部分,在ASME(The Americ
在国内核电AP1000三代核电核岛厂用水系统中首次引入了HDPE(High Density Polyethylene,简称HDPE)材料。而核电系统的特殊性,对系统稳定、可靠的要求非常高,另外对于管系内介质的流通面积、流通阻力、流量等性能指标也有严格的要求。本文根据国内外HDPE材料及管道发展现状,以国内三代核电厂用水系统HDPE管道施工和系统调试过程为分析对象,通过对现场对比、系统初始运行试验等
核电是一种清洁安全的能源,改革开放以来,为应对传统能源污染带来的负面影响,国家开始大力发展核电工程。随着核电工程的发展,核电钢筋工程逐渐成为核电建设过程中关注的焦点。AP1000核电工程设计使用的钢筋原材主要采用ASTM A615中的Grade 60420级螺纹钢(以下简称“美标钢筋”),从国外采购周期长,成本高,且不利于进度计划控制。国内虽有厂家生产美标钢筋,但规格不全,由于工程上各种规格钢筋使
依据我国的能源建设和核电发展战略目标,将建设一批第三代核电机组。AP1000是国家层面引进的一种国际先进的“非能动型压水堆核电技术”。采用模块化建造技术是AP1000的重要特点。在AP1000核电机组建设的过程中模块组装和安装发生了一些问题,主要是:反应堆腔室模块法兰组装过程中焊接变形较大,尺寸不满足设计要求;换料水箱西南墙模块吊装就位后变形严重等问题,这些问题严重影响了机组的建设进度。因此,探索