论文部分内容阅读
钛在改善和提高钢材性能方面具有显著优势,是许多钢种的重要合金元素,在钢中的应用日益广泛。但是,高钛合金钢连铸过程中易发生水口堵塞或结瘤、结晶器内结鱼等问题,它们是制约高钛合金钢连铸效率提升的重要因素。尤其是连铸保护渣的应用,在高钛合金钢连铸顺行和铸坯质量保障方面具有关键性作用。但是,传统高钛合金钢连铸保护渣的SiO2含量较高,结晶器内钢渣反应强烈,保护渣在浇铸过程中性能逐渐恶化,容易出现铸坯表面质量问题和粘结甚至漏钢等事故,迫使连铸生产过程降低拉速甚至中断浇铸。关于高钛钢连铸时结晶器内严重的结鱼现象,至今仍未找到消除高钛钢“结鱼”实现多炉连浇的有效方法。连铸保护渣技术诞生五十余年以来国内外虽进行了大量研究,但仍然不太清楚高钛钢连铸时结晶器内形成结鱼的机理,开发出的保护渣在高钛钢连铸生产应用中问题较多,实现多炉连浇难度依然很大。为解决上述问题以满足高钛钢大发展的需求,探索高钛合金钢连铸保护渣与钢水之间的作用机制,明确保护渣调控思路和目标,开发新的保护渣体系,在理论和实践上都具有重要的意义。
本文从保护渣钢渣反应的热力学和动力学入手,探索结鱼的产生机理和条件,为寻找和优化高钛钢保护渣提供重要的理论依据和指导。针对传统高钛钢保护渣中SiO2参与钢渣反应导致熔渣性能恶化的问题,以消除结鱼为目的,论文研究了高钛钢钢渣反应的行为特征、反应前后保护渣性能的变化和保护渣中氧化剂的加入对钢渣反应影响及作用规律。
首先,论文通过理论计算和实验研究,提出了高钛合金钢连铸结晶器内钢水中TiN促进铁素体形核析出这一结鱼形成的准确机理。即高钛合金钢水中的TiN和少量MgO、MgO·Al2O3等夹杂与铁素体晶格错配度小、晶格相似性强,极易成为核心促进铁素体凝固析出,由于铁素体中Fe含量高于高钛合金钢水,导致其液相线温度高于钢的液相线温度凝固形成结鱼,由于钢渣界面处结鱼物密度小于钢水大于熔渣,所以结鱼呈漂浮在结晶器钢渣之间的固态钢块或称为冷钢的形态。
其次,采用热力学计算并通过实验验证的方法研究了不同氧化剂在保护渣中的作用机理。在高钛合金钢保护渣中加入氧化剂,可达到对上浮至结晶器钢渣界面TiN夹杂氧化的目的,切断产生结晶器内结鱼的根源。结果表明:1000℃~1400℃时,纯物质Fe2O3、Cu2O、MnO2、Mn2O3和Mn3O4均可与TiN发生反应,SiO2则不与TiN发生反应。渣中氧化剂对TiN氧化作用由强到弱依次为:Mn2O3≈Fe2O3>Mn3O4>Cu2O;不同碱度的基础渣与钢水反应容易程度是:CaO-SiO2系>CaO-SiO2-Al2O3系>CaO-Al2O3系。熔渣中氧化剂Fe2O3和Cu2O被TiN还原为金属Fe和Cu;而MnO2、Mn2O3和Mn3O4在熔渣中被还原为低价态化合物,主要以Mn2+形式稳定存在,包含Li2Mn2O4、Mn2TiO4、MnAl2O4或MnO等一种或多种物相。综合评估不同氧化物在熔渣中的稳定性和氧化性,初步选取Mn2O3和Fe2O3作为氧化剂进行钢渣反应研究。
基于氧化剂基础作用的理论探索和实验,研究了高钛合金钢中TiN、TiO2夹杂物和氧化剂Mn2O3、Fe2O3对保护渣基础性能的影响规律,获得了具有良好吸收含钛夹杂物能力且性能稳定的基础渣系。结果表明:TiN对CaO-SiO2渣的基础性能影响较大,这也是高钛钢连铸结晶器内随着TiN在CaO-SiO2渣中的聚集,熔渣性能逐渐恶化、结鱼中出现大量夹渣的主要原因;TiO2对CaO-Al2O3渣基础性能影响较大,TiO2>10wt%时渣中钙钛矿成为主要析出物相,不利于结晶器内坯壳的润滑作用,提高了粘结漏钢的风险;Mn2O3和Fe2O3均能有效降低熔渣的黏度;含有Fe2O3的CaO-SiO2-Al2O3渣和CaO-Al2O3渣与TiN反应后熔渣的熔点和凝固温度明显提高;含有Mn2O3的基础渣与TiN反应后,CaO-SiO2-Al2O3渣主要物相为NaF、CaF2和MnAl2O4等,熔渣的性能较CaO-Al2O3渣更加稳定。
同时,针对连铸过程中高钛合金钢面临的结晶器内钢渣界面反应性问题,通过热力学计算、实验室渣-金接触实验以及工业现场试验,研究不同碱度保护渣基础渣系中SiO2、Na2O、B2O3、Fe2O3和Mn2O3等组分与钢水中易氧化元素[Al]、[Ti]和[TiN]的反应性,探究加入氧化剂后保护渣与钢水的竞争氧化反应规律,最终获得能够消除结晶器中TiN,并获得性能相对稳定的保护渣。研究结果表明:高钛合金钢渣-金界面的综合反应为吸热反应,但吸热量不足以使钢水凝固;当渣中不含Mn2O3时,TiN与渣中SiO2、B2O3和Fe2O3的反应为主要反应,Mn2O3的加入会改变渣中组分与TiN的反应顺序,使TiN与Mn2O3的反应为主要反应并增加TiN氧化率。钢渣反应后CaO-SiO2渣物相组成为钙钛矿、霞石和枪晶石相,结壳现象严重,加入Mn2O3后低熔点物相同比增加但结壳并未完全消除;CaO-SiO2-Al2O3渣熔化性能良好,但反应后的渣中依然存在TiN,加入Mn2O3后可优先氧化钢中TiN且当Mn2O3≤8wt%时能维持熔渣性能的稳定。
工业实验结果表明:采用CaO-SiO2-Al2O3+5wt%Mn2O3渣浇铸825合金,液渣中未发现TiN,浇铸过程中保护渣熔点和黏度性能稳定。该渣熔化性能良好,消耗量正常,结晶器热流稳定,粘结报警频次减少,有利于提高连浇炉数,铸坯表面质量得到了大幅度提高,铸坯收得率较过去大生产用国外渣,即比传统CaO-SiO2渣系提高了约10%。
本文从保护渣钢渣反应的热力学和动力学入手,探索结鱼的产生机理和条件,为寻找和优化高钛钢保护渣提供重要的理论依据和指导。针对传统高钛钢保护渣中SiO2参与钢渣反应导致熔渣性能恶化的问题,以消除结鱼为目的,论文研究了高钛钢钢渣反应的行为特征、反应前后保护渣性能的变化和保护渣中氧化剂的加入对钢渣反应影响及作用规律。
首先,论文通过理论计算和实验研究,提出了高钛合金钢连铸结晶器内钢水中TiN促进铁素体形核析出这一结鱼形成的准确机理。即高钛合金钢水中的TiN和少量MgO、MgO·Al2O3等夹杂与铁素体晶格错配度小、晶格相似性强,极易成为核心促进铁素体凝固析出,由于铁素体中Fe含量高于高钛合金钢水,导致其液相线温度高于钢的液相线温度凝固形成结鱼,由于钢渣界面处结鱼物密度小于钢水大于熔渣,所以结鱼呈漂浮在结晶器钢渣之间的固态钢块或称为冷钢的形态。
其次,采用热力学计算并通过实验验证的方法研究了不同氧化剂在保护渣中的作用机理。在高钛合金钢保护渣中加入氧化剂,可达到对上浮至结晶器钢渣界面TiN夹杂氧化的目的,切断产生结晶器内结鱼的根源。结果表明:1000℃~1400℃时,纯物质Fe2O3、Cu2O、MnO2、Mn2O3和Mn3O4均可与TiN发生反应,SiO2则不与TiN发生反应。渣中氧化剂对TiN氧化作用由强到弱依次为:Mn2O3≈Fe2O3>Mn3O4>Cu2O;不同碱度的基础渣与钢水反应容易程度是:CaO-SiO2系>CaO-SiO2-Al2O3系>CaO-Al2O3系。熔渣中氧化剂Fe2O3和Cu2O被TiN还原为金属Fe和Cu;而MnO2、Mn2O3和Mn3O4在熔渣中被还原为低价态化合物,主要以Mn2+形式稳定存在,包含Li2Mn2O4、Mn2TiO4、MnAl2O4或MnO等一种或多种物相。综合评估不同氧化物在熔渣中的稳定性和氧化性,初步选取Mn2O3和Fe2O3作为氧化剂进行钢渣反应研究。
基于氧化剂基础作用的理论探索和实验,研究了高钛合金钢中TiN、TiO2夹杂物和氧化剂Mn2O3、Fe2O3对保护渣基础性能的影响规律,获得了具有良好吸收含钛夹杂物能力且性能稳定的基础渣系。结果表明:TiN对CaO-SiO2渣的基础性能影响较大,这也是高钛钢连铸结晶器内随着TiN在CaO-SiO2渣中的聚集,熔渣性能逐渐恶化、结鱼中出现大量夹渣的主要原因;TiO2对CaO-Al2O3渣基础性能影响较大,TiO2>10wt%时渣中钙钛矿成为主要析出物相,不利于结晶器内坯壳的润滑作用,提高了粘结漏钢的风险;Mn2O3和Fe2O3均能有效降低熔渣的黏度;含有Fe2O3的CaO-SiO2-Al2O3渣和CaO-Al2O3渣与TiN反应后熔渣的熔点和凝固温度明显提高;含有Mn2O3的基础渣与TiN反应后,CaO-SiO2-Al2O3渣主要物相为NaF、CaF2和MnAl2O4等,熔渣的性能较CaO-Al2O3渣更加稳定。
同时,针对连铸过程中高钛合金钢面临的结晶器内钢渣界面反应性问题,通过热力学计算、实验室渣-金接触实验以及工业现场试验,研究不同碱度保护渣基础渣系中SiO2、Na2O、B2O3、Fe2O3和Mn2O3等组分与钢水中易氧化元素[Al]、[Ti]和[TiN]的反应性,探究加入氧化剂后保护渣与钢水的竞争氧化反应规律,最终获得能够消除结晶器中TiN,并获得性能相对稳定的保护渣。研究结果表明:高钛合金钢渣-金界面的综合反应为吸热反应,但吸热量不足以使钢水凝固;当渣中不含Mn2O3时,TiN与渣中SiO2、B2O3和Fe2O3的反应为主要反应,Mn2O3的加入会改变渣中组分与TiN的反应顺序,使TiN与Mn2O3的反应为主要反应并增加TiN氧化率。钢渣反应后CaO-SiO2渣物相组成为钙钛矿、霞石和枪晶石相,结壳现象严重,加入Mn2O3后低熔点物相同比增加但结壳并未完全消除;CaO-SiO2-Al2O3渣熔化性能良好,但反应后的渣中依然存在TiN,加入Mn2O3后可优先氧化钢中TiN且当Mn2O3≤8wt%时能维持熔渣性能的稳定。
工业实验结果表明:采用CaO-SiO2-Al2O3+5wt%Mn2O3渣浇铸825合金,液渣中未发现TiN,浇铸过程中保护渣熔点和黏度性能稳定。该渣熔化性能良好,消耗量正常,结晶器热流稳定,粘结报警频次减少,有利于提高连浇炉数,铸坯表面质量得到了大幅度提高,铸坯收得率较过去大生产用国外渣,即比传统CaO-SiO2渣系提高了约10%。