论文部分内容阅读
由于电致变色器件可以进行可逆的颜色变化并动态的调控光线和热量的入射强度,使其受到了广泛的关注。目前,电致变色薄膜可以用于建筑物、汽车、飞机等的玻璃窗上,作为智能窗、汽车防眩后视镜、显示屏等等。本文中分别以不同的方法制备了氧化镍和普鲁士蓝的纳米结构,通过沉积、旋涂或电沉积等方法制备成膜,对薄膜的电致变色性能进行了研究。材料的电致变色性能与材料本身的形貌和尺寸密切相关。本文得到的主要研究结果如下:(1)采用将反应体系先水热处理后将水热产物煅烧的方法制备出具有花状微纳结构的氧化镍(NiO)。然后使花状微纳结构的氧化镍均匀分散后,通过沉积使其在导电玻璃上成膜。通过X射线粉末衍射仪,透射电镜,扫描电镜,热重分析仪,紫外分光光度计以及电化学工作站对氧化镍花状微纳结构及其薄膜的物相、形貌、受热行为和电致变色性能进行了测试和分析。在合成过程中,我们发现过硫酸钾的浓度对花状微纳结构前驱体的生成起着至关重要的作用,提出了氧化镍花状微纳结构的生长机理。由于电解液中的离子能够快速扩散到花状微纳结构的纳米片中,所以花状氧化镍微纳结构薄膜的变色响应速度很快。在300℃煅烧1.5h的氧化镍薄膜具有较快的着色/褪色响应速度(着色响应时间为1.3 s,褪色响应时间为3.2s),较高的着色效率(49.8cm2·C-1),使其有望应用于快速响应的智能变色窗。(2)用聚苯乙烯纳米球作模板,通过模板法制备了厚度约为10 nm的氧化镍超薄纳米片。发现尿素浓度对模板表面纳米片的形成有着至关重要的影响,根据观察到的实验现象提出了氧化镍超薄纳米片的形成机理。由于氧化镍超薄纳米片可以提供较大的活性表面积,可以加快离子和电子的注入/抽出速度,从而使得电致变色响应速度加快。通过透过率以及循环伏安等方法在1.0 mol·L-1 KOH电解液中对薄膜的电致变色性能进行了研究,结果表明所制备的薄膜具有较宽的透过率调制范围(~40.1%),较快的着色/褪色响应速度(着色响应时间为5.4 s,褪色响应时间为3.2s)和较高的电致变色着色效率(43.5 cm2·C-1)。(3)通过恒电流电沉积法制备普鲁士蓝薄膜。分别以空白的ITO导电玻璃为衬底和旋涂有碱式硅酸镍的ITO导电玻璃为衬底进行电沉积以制备具有不同表面形貌的普鲁士蓝薄膜。以旋涂有碱式硅酸镍的ITO导电玻璃为衬底制备的普鲁士蓝薄膜在700 nm处着色态与褪色态之间最大透过率调制范围为46.5%,着色响应时间为1.5s,褪色态响应时间为1.6s;而以空白ITO导电玻璃为衬底制备的普鲁士蓝薄膜在700nm处着色态与褪色态的之间最大透过率调制范围只有36.6%,着色响应时间为2.6s,褪色响应时间为2.4s。