基于MobileNet V3的低位宽定制计算方法研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:zhangxyz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
卷积神经网络(Convolutional Neural Network,CNN)依靠复杂的结构和海量的参数在图像分类和目标检测等应用中展现出优异性能,但这也为CNN在计算资源和存储资源受限的边缘端硬件部署带来巨大挑战。模型压缩方法因能够减少CNN计算复杂度和尺寸,为CNN边缘端部署的资源优化提供了可行的解决方法。参数量化作为模型压缩方法的有效手段之一,通过使用较低位宽表示典型的32位浮点网络参数,能够使CNN以更少的计算资源消耗进行推理,从而为CNN计算的峰值性能提升创造了条件。基于课题组科研项目需求,本文采用MobileNet V3网络进行图像分类,由于该模型大部分计算集中在卷积层,为达到计算加速目标,本文重点对模型卷积层进行参数量化,并针对量化后的模型开展低位宽参数的定制化计算结构分析和设计,从而利用现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)实现基于特定位宽数据的计算系统。在同样的逻辑资源限制下,利用低位宽参数能够实现比浮点参数更高并行度的卷积计算,进而实现整个模型的推理速度提升,具体研究内容如下:(1)针对MobileNet V3推理过程中,因提取权重和中间计算结果导致的高延时片外数据访存问题,对模型结构进行压缩以减少片外存储与片上缓存的数据交互,从而避免由于低效率访存造成的额外能效开销。实验结果表明,本文轻量化处理方案将模型尺寸减小20倍以上,同时模型图像分类的性能损失小于3%。(2)针对模型各卷积层在提取特征信息上具有不同作用的特点,采用混合精度量化方法以实现与特征提取能力相匹配的位宽组合。本文提出基于卷积层绝对值平均的混合精度量化方法(Absolute value mean aware Weight Quantization,AWQ),按照重要性确定卷积层参数的量化位宽,实现低位宽计算需求和模型特征提取能力的平衡。实验结果表明,AWQ混合精度量化后,卷积层能够完全以整数形式进行计算,同时模型对图像分类的性能损失不高于10%。(3)针对混合精度量化后模型各卷积层参数具有尺度差异,通用卷积计算单元无法满足所有层计算范围要求的问题,进行定制位宽卷积计算单元设计。本文分析混合精度量化后,各步骤卷积计算输入和输出的数据位宽,设计定制位宽的计算单元,采取算法优化手段,充分利用FPGA逻辑资源,实现高并行性、低延时的卷积计算。本文基于课题组在科研项目中实际的遥感图像处理应用实例,验证和分析FPGA加速器性能。实验结果表明,低位宽定制FPGA加速器可实现8.11GOPS(Giga Operations Per Second,十亿次计算每秒)的计算性能,相比未量化32位浮点数卷积能够获得48%的提升。
其他文献
工业机器人在汽车装配领域已经成功应用多年,然而,由于3C(Computer,Communication,Consumer Electronics)产品具有体积小、质量轻以及装配精度要求高的特性,其装配仍然以人工为主,是目前3C制造业人工使用最多的环节。随着人力成本的持续上涨,装配工序自动化的实现迫在眉睫。但现有的工业机器人都难以同时满足3C产品装配对高精度,高灵巧性,低成本的要求。因此,基于对3C
微藻可以通过高效的光合作用以及自身代谢将二氧化碳转化成碳水化合物并储存在胞内,从而作为原料用于生物质乙醇生产等。但是使用传统方法在进行微藻胞内碳水化合物含量测定时,会有检测步骤繁琐以及产生二次化学污染风险等局限性,且难以实时确定微藻胞内的碳水化合物含量。近些年,随着深度学习在人工智能中的蓬勃发展,为高效处理复杂信息的智能检测技术提供了新的契机。一方面,微藻胞内碳水化合物的积累与光合作用密切相关,另
由于横风向振动的复杂性,传统的横风向振动理论,如准稳态理论、范德波尔振子模型,其预测精度往往是非常有限的。目前对矩形柱体和矩形截面高层建筑横风向振动的研究主要依赖于耗时耗力的风洞试验和数值模拟技术。本文主要基于机器学习技术来研究矩形柱体和矩形截面高层建筑的横风向振动。同时,采用无监督学习的方法分析了矩形截面高层建筑的横风向力功率谱特性。为了准确评估矩形柱体的横风向响应,基于文献中的高质量的风洞试验
随着我国在经济军事领域上飞速发展,对大型装备(如飞机、大型舰艇以及空间站等)中不规则构件的测量已成为仪器科学领域的热点问题。对不规则构件的测量,最基本的方法为传统测量法,该方法由专业的技术人员操作各种测量仪器实现,难以摆脱人工干预,效率较低,因此需要一种更加智能和自动化的测量方式。近年来,工业机器人搭配高精度的传感器成为了测量不规则构件的新方式,使得测量更加智能高效。这种测量方法依靠机器人的灵活性
NO2是常见的有毒气体,不仅影响大气环境,也会严重危害人类健康。因此NO2的痕量检测不管是对于军用领域还是民用领域来讲都是十分重要的。由于气体传感器在智能化、信息化社会当中扮演着越来越重要的角色,所以它的市场规模在迅速攀升。除此之外气体传感器的应用领域也日益广泛,如环境保护、航空航天、现代军事、防化防恐、汽车工业等。广泛的应用领域和迫切的应用需求使得先进的气体传感器研究是十分必要的。半导体式气体传
智能打捞作业拟在高海况下利用舰载机器人完成高价值海面漂浮物的抓取和可靠回收。为解决其中涉及的波浪动力学分析、大型串联机器人功能设计、海面漂浮物运动预测、海面漂浮物的智能抓捕等一系列核心技术问题,需构建一个半实物仿真系统,利用成熟的仿真技术来优化设计和训练控制算法。考虑控制器算法设计和验证的复杂性,特别需要构建控制器在环的仿真系统进行设计。本文在已有的半实物仿真系统基础上,对控制器在环仿真系统进行设
中国的苹果种植史可以追溯到两千多年以前,苹果的产量占世界总产量的40%以上。目前,苹果的分级主要是人工完成的,依赖于人的视觉来区分诸如颜色、形状、大小和缺陷等特征。这种人工分级的方法是主观的,不可重复且缓慢的。再加上其他人为因素,这种劳动密集型实践造成的身体疲劳,通常会使分级精度相当差。由此可见,自动化、高速、高效的苹果分级技术受到果农的青睐。显然,自动分拣技术可以克服传统的苹果人工分级的问题。苹
工业机器人是一种重要的自动化加工设备,高的绝对定位精度有助于推广工业机器人在高精密加工装配中的应用。传统基于模型的运动学标定方法对提高工业机器人的精度作用有限,所以需要寻求一种广义运动学误差标定方法,对那些导致工业机器人定位误差的几何参数误差和非几何参数误差进行标定,以降低工业机器人的定位误差,提高其绝对定位精度。为了寻找能使工业机器人的绝对定位误差大幅度减小的标定方法,本文进行串联工业机器人的广
涡轮发动机燃烧室等内部处于高温、高压、高腐蚀等环境,需要采用温度传感器对其内部进行实时的监测,这类传感器不仅需要能够应用于以上恶劣环境,还需要具备无线以及体积小的特点。目前温度测试技术的关键在于缺乏新的敏感元介质材料以及无线传感机制,本文提出了一种集开槽天线于一体的谐振腔式无线无源温度传感器。该传感器是采用先驱体转换PDC-SiBCN陶瓷为介质材料,银作为金属导体形成谐振腔,以开槽天线为传输线,实
在中国制造2025的大战略下,生产的智能化,自动化,逐渐的成为了当前制造业发展的主流趋势,工业机器人的应用更是在其中扮演了十分重要的角色。但目前工业机器人的从业者主要工业机器人关联行业的人员,在进入正常作业状态之前,仍需要进行大量的培训任务,虽然各高职、职业院校开设工业机器人专业以应对高速增加的社会职业需求,但目前的需求仍然无法被满足,主要原因是市场上常见的工业机器人实训系统,只能实现功能单一、任