论文部分内容阅读
根据调研和文献,对不同的溅射技术进行了比较,针对脉冲磁控溅射(Pulse Megnetron Sputtering(PMS))的特点及受限于电源技术的瓶颈,提出了A2K(Active Arc Killer)电源指标:输出频率最高达300kHz,负向电压在0~-500V可调,负向最大峰值电流达2A,正向电压在0~100V可调,正向最大峰值电流达1A,负向占空比10%~60%范围可调的双向脉冲电源。为了实现电源指标,分析了拟设计电源的难点:主要是受电力电子器件的限制,电压、电流和频率同时达到所需水平的电力电子器件目前在国内无法找到,即使找到了成本也是相当高。因此,本文从结构上入手,提出了整体的电源解决方案,它由两个独立的DC/DC变换(分别用于调节正、负向电压)、一个斩波系统(用于形成正向脉冲)和一个逆变倍频系统(用于形成负向脉冲)构成。逆变倍频系统及其与斩波系统的配合是核心问题,方案在一定程度上突破了电力电子器件的限制,为溅射电源设计提供了新的方案。根据总体方案,详细论述了主电路的拓扑选择、功率器件的选择、磁性器件的设计、缓冲电路的选择、控制电路和驱动电路的设计。在比较了各种拓扑优缺点之后,根据电源指标要求,选择了全桥电路作为负向调压系统的DC/DC变换拓扑,正激电路作为正向调压系统的DC/DC变换拓扑,逆变倍频系统也采用全桥逆变,副边采用可控整流。由于对频率有较高要求,功率开关管全部采用功率MOSFET。讨论了中高频下Miller效应对功率开关管驱动的影响及其解决方案,还讨论了缓冲电路的作用及参数选择。本文还从工程经验上详细描述了电源调试中出现的问题和如何解决这些问题的详细过程。通过示波器检测驱动信号实时波形,验证了Miller效应的影响。通过检测负载电压和电流波形、电源在功能上达到了设计指标。实际用于磁控溅射实验,与RF、DC溅射进行比较,验证了脉冲溅射的优势和电源的实用性,此电源可作为实验室磁控溅射试验电源。