论文部分内容阅读
天线系统是实现无线信号传输极其关键的部分。在工程应用中天线通常需要天线罩的保护,天线罩多会与金属底座形成封闭的天线舱系统。但天线罩引起的电磁场幅相畸变以及封闭天线舱带来的复杂传播环境会在一定程度上影响天线的电磁性能,因此对天线阵及其与天线罩形成的天线舱系统的辐射与散射特性研究,在通信、遥感、国防安全等领域中均有着重要的科学意义和工程价值。快速精确地模拟天线单元及阵列的电磁性能、高效地设计低成本高性能的天线阵列、合理地评估天线舱对舱内天线电磁特性的影响、有效地优化舱体引起的系统性能恶化是当前亟待解决的问题。为此,本文分别从目标的辐射特性和接收特性两个角度,对天线阵及天线罩加载的天线舱系统的高效分析、设计与优化等问题展开了系统的研究。首先,本文介绍了研究工作中所采用的数值分析方法,包括积分方程方法的基本原理、矩量法的数值实现、快速求解技术、电磁散射与辐射激励模型以及线性系统中电磁结构的互易原理,作为本研究工作的基础理论支撑。高效精确的数值模型是分析天线及天线舱系统电磁特性的前提。为解决传统体面积分方程(Volume surface integral equation,VSIE)方法分析微带天线辐射特性时出现的谐振频率偏移、收敛性差和未知量大等问题,本文从基函数的选取、边界条件的处理以及未知量的减缩三个方面对传统模型进行了创新性地改进,提出一种适用于微带结构快速分析的数值模拟新方法。为消除传统模型的频偏问题,新方法引入了平行板电容准静态关系以描述贴片、地板和介质基板之间的强耦合特性,建立金属与介质交界面处的边界条件,以保证模型的稳定性,提高解的精度;该方法使用定义在四边形网格上的高阶叠层Legendre基函数取代传统RWG基函数,在展开金属表面电流时能更好的描述天线谐振时辐射贴片上较强的边缘电流,从而显著提高收敛性并降低未知量;同时,该方法利用金属的表面电流直接表述介质内的电位移矢量,故待求未知量仅位于金属表面,无需求解介质内的未知量,进一步大大缩减了未知量总数。与传统的VSIE方法相比,该方法在分析微带天线及其阵列辐射特性时,可以在降低大量未知量的同时明显提高求解精度和收敛速度。接着在天线阵列的设计方面,本文基于天线接收模型的Poynting能流特性,提出了一种提高阵列增益的高效设计新方案。该方案从接收天线的角度,利用Poynting能流方法分析天线对周边能量分布的影响,并将相关物理特性可视化,进一步指导天线阵列的设计。通过研究不同匹配状态下天线对能量的扰动特性,本文利用短路偶极子天线不吸收能量但能引导能量流动方向的特性,合理设计其布放位置,引导原被散射的能量至所需方向,来增强相邻天线单元对能量的吸收能力,从而提高阵列的口径利用效率和增益。与传统从辐射角度出发的设计方法相比,该方案为阵列的分析和设计提供了一种新的理解角度和直观的设计思路,降低了阵列设计的难度。当天线于天线舱内工作时,针对因舱体损耗以及舱内场的多径传输效应等原因引起的天线辐射性能恶化的问题,本文提出了一种基于理想点源辐射模型的天线舱系统评估及优化策略。该策略用点源做测试源,利用积分方程方法通过分析点源加罩前后辐射场的幅相变化信息,实现天线舱系统的快速评估和优化设计。为提供更多的优化自由度,本文将舱内阵列的激励幅度和相位选做优化域,取代传统对天线罩壁结构的优化。接着,利用上述策略提取出的相位变化信息来设置各单元的补偿相位,以抵消舱体对辐射场相位的影响,从而消除指向误差。然后基于所提出的评估手段,利用优化算法调整罩内阵列的激励幅度,实现高副瓣电平的有效抑制。此外,本文还提出了更具应用可行性的幅度分级策略,简化了工程应用中馈电网络设计的复杂度。基于点源模型的评估策略,一方面考虑了各阵列单元辐射场在天线舱内的多径传输效应,另一方面又避免了分析天线精细结构带来的多尺度问题,有效地提高了优化迭代期间系统的分析效率,且该优化方案可在不改变天线罩结构的前提下,实现天线舱系统指向精度的明显提高和高副瓣电平的有效抑制。虽然上述优化策略可有效地优化天线舱系统的电磁特性,但罩内阵元数增多时,计算复杂度也会随之增加。为此,本文最后提出了一种基于接收模型的天线舱系统优化策略。该方案基于互易原理,通过分析平面波从不同角度入射时罩内阵列栅格处的电场信息,来实现系统的评估、诊断和优化。该策略利用主瓣方向入射时阵列栅格的电场相位信息来设置阵列单元的补偿相位,有效消除天线舱引入的指向误差。通过对比分析阵列栅格处的电场对平面波分别从主瓣和副瓣方向入射时的响应,诊断出对高副瓣电平影响较大而对主瓣增益影响较小的敏感单元,并以此确定阵列的优化域。然后利用优化算法调整该优化域内单元的激励幅度,实现高副瓣的有效抑制。此外,为解决该优化方案导致的非均匀激励问题,本文进一步引入了天线旋转策略,仅需将优化域内的阵列单元旋转适当角度,便可有效抑制天线舱系统的高副瓣电平,无需修改罩体结构或设计复杂的馈电网络。该优化方案的计算复杂度仅与待优化角度数目有关,而与罩内阵元数无关,且只需调整天线阵列敏感单元的激励权值或放置角度。因此对比于辐射模型,该优化方案在分析大型阵列天线舱系统时,优化效率更高,应用潜力更大。