基于裸片的宽带高效率功率放大器的研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:skb09
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着第五代移动通信的到来,人们的生活也变得日益多彩。用户通过终端上各式各样的软件享受着科技带来的便捷的背后是传输数据量的不断增多。为了提高通信系统的传输容量,通信频带已经拓展到毫米波频段。随着通信频率的升高,晶体管封装参数对功率放大器性能的影响越来越大,同时键合金丝对射频电路性能的影响也变得不能忽略。因此,如何消除金丝对功率放大器匹配电路的影响以设计宽带高效率功放值得海内为学者去探索。针对上述问题,本文首先分析了连续类功率放大器的工作原理以及金丝对射频电路性能的影响,并通过建立金丝的等效电路模型将晶体管的负载阻抗解空间转换到键合处,再利用微带线对键合处的阻抗进行匹配,完成了金丝网络在功放匹配电路中的设计。该方法既解决了晶体管封装参数对功放性能的影响;又解决了金丝对射频电路传输性能的影响。本文通过设计一款工作频率为3-4GHz的宽带功率放大器,验证了上述放大的可行性。实际测试具有大于40d Bm的输出功率以及大于65%的PAE,增益为13d B。其次,通过多次键合金丝及测试,并对比测试结果可以分析出金丝的工艺容差对功放性能的影响可以忽略。最后,分析了晶体管封装参数对Doherty功放性能的影响,并通过上述金丝参与匹配设计的方法设计了一款工作与3.2GHz-3.8GHz的宽带Doherty。实际测试在饱和点具有52%~61%的漏极效率,回退点具有40%~53%的漏极效率,验证了设计方法的可行性。
其他文献
伴随着现代工业生产规模的不断扩大,工业生产已经进入了大数据时代,在日常的工业生产流程中,每一个作业环节都会产生许多需要记录的生产数据值,以此作为衡量产品是否合格的标准。对于许多机器较为陈旧的工厂而言,其设备并不具备相应的数据接口,大多数时候都必须依靠人工识别手动抄录的方式来完成对生产数据的记录,这样高度重复枯燥乏味的工作无疑是对人力资源一种极大的浪费,使得工厂的生产效率大打折扣。为解决这一问题,迫
监察体制改革下对于高校公权力行使者如何监督,学界知之甚少。高等教育领域的公权力监督问题似乎一直游离在人们的视野边缘,尽管实践中已然设立了对高校公权力行使进行监督的相关部门和机构。不仅学界对这一问题关注较少且所提建议有如隔靴搔痒,不得要领,实务人士也或不能很好描述这一实践图景,或基于各种原因而三缄其口。随着国家《监察法》颁布,各级监察委员会有序运转,国家监察体系总体框架初步建成,监察体制改革进入面向
目前,互联网处处都有推荐系统的身影,如电商、新闻、短视频等等。信息过载情况下,推荐系统能快速从商品库中筛选出用户可能感兴趣的商品,不仅帮助用户高效获取信息,还能提高商家的收益。推荐系统已经成为互联网应用中的核心技术之一,也是推动互联网增长的强劲引擎。本文从推荐系统应用场景中的几个普遍存在的实际问题出发,提出了一些新的思想与算法。具体内容如下:(1)首先,在推荐系统中,常常为每个用户计算一个嵌入向量
随着通信方式与场景越来越复杂,对微波信号的性能提出了更高的要求。微波振荡器是产生微波信号源的重要器件,其性能好坏将直接影响无线系统的各项性能指标和传输性能。本文针对振荡器的相位噪声性能开展深入研究,基于相位噪声理论模型,探索新型选频网络拓扑结构并应用到反馈式振荡器之中,相位噪声性能皆超过国内外文献所报道的同类器件水平。主要研究工作包括以下三方面:1、提出了一种基于源/负载耦合选频网络的单端新型振荡
我国是一个农业大国,“三农”问题关乎国计民生。十九大上提出乡村振兴,这是着眼于解决“三农”问题的重要战略部署,是针对我国不平衡不充分发展现状做出的重大举措,是实现农村全面、长效发展的有力措施。乡村振兴是全方面振兴,意味着乡村中的文化、政治、经济、社会、生态文明和党的建设都要实现振兴。农民是新时代乡村振兴的主力军之一,农民拥有着参差不齐的生态意识,农民是否拥有良好的生态意识关乎农民身心健康,关乎农村
2D人体姿态估计是计算机视觉中的基础但是又具有挑战性的问题。姿态估计的目的是定位出人体的二维平面的关键关节点的坐标(例如:头部,肩膀,脚踝等等)。它有非常多的运用,例如:行为识别、游戏娱乐、电影姿态捕捉、人再识别等等。人体姿态估计是一个早在上个世纪70年代就开始研究的课题,但是人体姿态估计一直难以达到可以应用的水平。随着大规模数据集Image Net以及卷积神经网络Alex Net等的兴起,卷积神
近年来,随着计算机图形学和计算机视觉技术的发展,虚拟现实技术(Virtual Reality,VR)在动画制作领域、游戏领域、影视领域的应用日渐广泛,写实风格的三维人脸模型也更多地出现在上述领域中。三维人脸模型一般由美术人员手工制作,制作过程繁琐且耗时。为了高效快速地建立写实的三维人脸模型,基于单幅照片(Single-View image)的三维人脸重建技术成为了热门的研究课题。现阶段主流的人脸重
分置天线多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的发射接收天线空间间隔较远,拥有传统雷达不具备的波形分集增益和空间分集增益,可以显著提高雷达的目标检测以及参数估计等系统性能,因此引起了广泛的关注和研究。传统的雷达目标参数估计算法计算复杂度高且不可控,在复杂多变的实际环境中,根据实时接收数据自适应估计参数的性能也是有限的。深度学习具有强大的实时处理数
随着机器学习和深度学习在图像处理领域取得了较大的突破和较好的效果,许多研究者开始将深度学习应用在图像处理的各个问题上,图像超分辨率重建就是其中一个经典的问题。如何将卷积神经网络应用在图像超分辨率重建上,使得重建出来的图像能具有较好的人眼观感、较丰富的细节和更接近真实图像的效果,是研究者所需要解决的重点。此外,当前的卷积神经网络进行超分辨率重建时所需要的重建时间和网络消耗的运算、存储资源都较大,不能
滤波器作为一种二端口网络,具有特定的频率选择特性在近代电信设备和各类控制系统中,滤波器的应用极为广泛,其性能的优劣往往影响着整个通信系统的质量。随着射频及微波技术的不断发展,电磁波频谱资源变得日益紧张。所以无线通讯系统对滤波器的指标和性能都提出了新的要求。例如高选择性、体积小易集成、功率大损耗小等。基片集成波导(Substrate Integrated Waveguide,SIW)兼具矩形波导Q值