论文部分内容阅读
波浪是海洋及近岸区域最为活跃、最为重要的环境动力因素之一,因此,对波浪从外海向近岸传播变形的研究是水动力学研究的前沿课题之一。本文分别对双曲型缓坡方程和具有精确色散性的非线性波浪方程进行了研究和讨论,两方程均对水深没有任何限制,可用于深海至近岸的波浪传播变形计算。通过在方程中加入波幅离散非线性效应项,对Copeland(1985)给出的经典双曲型缓坡方程进行了非线性修正,本文通过首先指定线性波数(?),由波浪振幅来修正波浪角频率,这同Stokes三阶波浪理论一致,即波浪角频率和波浪振幅有关。由于缓坡方程本身存在缓坡假定,因此,可认为考虑波幅离散非线性效应的双曲型缓坡方程也近似满足波峰守恒方程。出于应用目的,在模型中加入了波浪破碎时的能量耗散项,以考虑由波浪破碎所引起的能量损失,同时还增加了底摩擦项,可根据需要以考虑底摩擦的影响,拓展了模型的应用范围。此外,还研究了另一种非线性修正方式,即在经典双曲型缓坡方程中,将线性相速度、群速度替换为非线性相速度、群速度。通过对经典的椭圆形浅滩实验以及坡度分别为1:40、1:100的缓变海岸上的波浪传播变形实验进行数值模拟,验证了模型的有效性。其次,应用载波频率摄动展开和线性叠加原理,将上述修正后的双曲型缓坡方程的适用范围由规则波浪扩展至不规则波浪,使其能够应用于窄谱不规则波浪情况。同时,提出了一种考虑不规则波波幅离散非线性效应的近似方法,即引入一个代表波幅来代替载波波幅,通过考虑代表波幅的波幅离散非线性效应来考虑不规则波的波幅离散非线性效应,建立了可以考虑不规则波波幅离散非线性效应的双曲型缓坡方程。同时在模型中考虑了波浪破碎能量耗散效应以及底摩擦效应,扩展了模型的应用范围。另外,出于比较目的,采用同样的方法对Smith和Sprinks给出的时域缓坡方程进行了改进,使其同样可以考虑波幅离散非线性作用。通过模拟不规则波在椭圆形浅滩上和坡度分别为1:40、1:100的斜坡地形上的传播变形实验,验证了模型的有效性。前面所讨论的双曲型缓坡方程在色散性上是完全精确的,但波浪的非线性特征仅是经验性地通过非线性色散关系式来讨论,并没有严格的理论基础。本文还通过严格地数学分析,研究了另一种具有精确色散性的非线性波浪方程。通过引入自由表面上速度势,应用Fourier积分变换,由Laplace方程、自由表面动力学边界条件、自由表面运动学边界条件以及水底边界条件推导出具有精确色散性的高阶方程。该方程非线性近似至三阶,可以考虑波幅离散非线性效应的影响以及四波非线性相互作用,色散性是精确的,对水深没有限制,可用于深海至近岸的波浪传播变形计算。分别建立了(水平)一维、二维数学模型。应用具有精确色散性的非线性波浪方程(水平)一维数学模型分别对一阶、二阶、三阶方程进行验证。与常水深线性波、二阶Stokes波的解析结果进行比较,计算结果与解析结果符合良好,说明该方程适用于从深水到浅水水域的线性波以及非线性波浪的传播变形计算。对常水深波群传播变形实验进行了数值模拟,进一步验证了该模型可以考虑波幅离散以及四波共振非线性效应的影响。应用具有精确色散性的非线性波浪方程(水平)二维数学模型分别对圆形浅滩地形上波浪的传播变形实验以及两个椭圆形浅滩地形上波浪的传播变形实验进行数值模拟,计算结果与实验结果符合良好,说明该模型可以考虑地形变化(缓坡)引起的波浪折射现象。