【摘 要】
:
Takagi-Sugeno-Kang(TSK)模糊系统的特点是能使用线性模型的方法求解非线性模型。TSK模糊系统的这个特点使得其在众多的领域都受到了广泛的关注。但是,与其它有监督学习一样,TSK模糊系统需要充足的信息。然而,在真实世界的应用中,训练数据经常是有限的,而模型也不能充分的挖掘数据中的信息,因此很容易导致过拟合问题。现有的TSK模糊系统方法,更多的把目光放在了模型结构的研究上,忽视了实际
论文部分内容阅读
Takagi-Sugeno-Kang(TSK)模糊系统的特点是能使用线性模型的方法求解非线性模型。TSK模糊系统的这个特点使得其在众多的领域都受到了广泛的关注。但是,与其它有监督学习一样,TSK模糊系统需要充足的信息。然而,在真实世界的应用中,训练数据经常是有限的,而模型也不能充分的挖掘数据中的信息,因此很容易导致过拟合问题。现有的TSK模糊系统方法,更多的把目光放在了模型结构的研究上,忽视了实际应用中经常遇到的训练信息不足的问题。所以,模型很容易出现过拟合的问题。流形学习能够进一步挖掘样本的结构信息。因此,本文将流形学习引入模糊系统,提出了两种新型TSK模糊系统模型,具体研究内容如下:首先,针对此问题,本文提出了一种双流形正则化TSK模糊系统建模方法(TSK Fuzzy System Modeling Method Using Two Manifold Regularizations)。该方法首先提出了基于样本空间中样本的几何分布的流形正则化,在输出空间中保留样本在样本空间中的几何分布;然后又提出了基于字典空间中特征之间的相关性的流形正则化,在学习过程中约束具有相关性的参数之间的相关关系。在多个真实数据集上的实验结果证明了该方法的良好的性能。接着,为了解决现有的多任务模糊系统方法只专注于任务间共享知识,忽视每个任务特有属性的问题,本文在多任务学习的框架下,提出了一种新型的有低秩和稀疏结构后件参数的流形正则化多任务模糊系统模型(Manifold-regularized Multitask Fuzzy System Modeling with Low-rank and Sparse Structures in Consequent Parameters)。该方法首先提出了一种基于多任务子字典空间中特征之间的相关性的流形正则化;然后将后件参数分解为两个部分:多任务共享的低秩结构部分和代表单个任务特有属性的稀疏部分,来平衡多任务间共享知识和单个任务的特有属性。实验表明,该方法优于现有的方法。
其他文献
由于第四次工业革命对工业智能化的需求逐渐增加,多智能体系统的分布式协同控制问题在近年来逐渐受到越来越多的研究者的关注。在多智能体系统的研究领域中,一致性问题是一个研究热点。在过去的许多研究中,研究者们假设多智能体系统所处的环境是理想的,即多智能体系统不会受到网络攻击的影响。然而,多智能体系统对于通信网络的依赖性使其暴露在了网络攻击的威胁中。因此在设计多智能体系统时,考虑网络攻击所带来的影响非常有必
人体行为识别是人工智能、模式识别以及机器学习等领域中最重要的研究方向之一,是计算机视觉和多媒体分析领域的热点研究课题,在安全监控、人机交互、医疗诊断、视频分类等领域都有着重要的学术意义和巨大的应用价值。虽然人体行为识别方法在早期的研究过程中已经取得了较大的进步,但是在实际应用中人体行为识别数据常受到光照变化、复杂背景、遮挡和人体自身等因素的影响。这使得人体行为识别研究始终是十分具有挑战性的课题。现
近年来,随着人工智能与机器视觉技术飞速发展,行人检测和跟踪技术因其具有重要的学术研究价值和商业价值,受到人们广泛关注,基于检测的目标跟踪算法逐渐成为研究的热点,其中检测器的性能对算法最终的跟踪性能起着至关重要的作用。论文沿用基于检测的跟踪框架,对基于卷积神经网络的行人检测与跟踪算法进行了深入研究,主要研究内容如下:在行人检测方面,针对目前行人检测过程中漏检率高和检测速率慢的问题,在YOLOv3算法
随着网络通信技术的日益成熟、网络规模的不断扩大,网络安全具有越来越重要的意义。网络流量数据的异常检测和分类成了维护网络安全的一种重要手段,近年来受到越来越多的关注和研究。但目前网络流量数据异常检测和分类的研究中存在着数据量大、数据分布不平衡、传统的异常检测和分类方法准确度较低等问题。自编码器是深度学习领域中重要的神经网络,由于其出色的特征提取能力而被广泛研究用于数据的异常检测和分类领域,本文主要针
迭代学习控制广泛应用于具有重复运动特性的被控对象的轨迹跟踪问题,其利用先前批次的输入以及误差信息,不断修正当前批次的输入信号,经过足够多的批次后能够实现准确跟踪。实际中被控系统一般都是非线性系统,因此,将迭代学习控制理论应用于非线性系统的跟踪控制问题具有重要研究价值。在传统的迭代学习控制研究中,学习律的增益大多是固定不可变常数,增益固定系统收敛速度一般也固定,初始参数的设定决定了系统的运行状况。变
目标跟踪是计算机视觉的重要分支之一,正随着信息科技的发展在人机交互、智能机器人、自动驾驶、国防安全、视频监控和智慧城市等领域中得到越来越多的重视和应用。尽管视觉跟踪技术在过去数十年中得到了长足的发展,但由于目标遮挡、尺度变化、外观形变以及相似物体干扰等跟踪环境因素的复杂多变,能够在多应用场景下满足对跟踪的精度、实时性和鲁棒性等需求仍是一项艰巨但有着光明前景的工作。本文基于深度学习算法模型,针对长时
在智能护理机器人领域,如何帮助机器人快速且准确地识别护理对象的动作行为已成为该领域的热点研究问题。准确识别动作行为是护理机器人实现护理智能化的先决条件,且可增强护理机器人的动态感知能力,故行为识别技术是护理机器人实现智能化的重要组成部分。基于深度学习的行为识别技术具有建模过程简便且训练模型容易的优点已逐渐成为行为识别技术的发展趋势,但基于深度学习的行为识别技术在识别准确率、泛化能力及收敛速度等方面
随着人类生产生活方式的不断更新变化,人们开始更加注重自身的健康问题以及生存环境的安全问题,特别是对各种有可能危害健康和破坏大气环境的有毒有害气体的加以关注。气体传感器作为一种能够监测各种气体浓度和成分的装置已经被广泛应用于众多场景,也吸引了更多人的目光。因金属氧化物半导体式气体传感器自身拥有的一系列优势,例如性能相对较好、器件结构简单以及性价比高等,而成为了许多研究人员争相报道的对象。很多时候人们
近年来,随着科技的不断进步发展,移动机器人相关技术已逐步在人类实际生活与生产过程中发挥重要作用,相关行业领域对于移动机器人的性能需求也愈发迫切。自主位姿估计与运动控制作为移动机器人在未知环境中完成工作任务的技术基础,近些年来引起了国内外学者的广泛关注。针对移动机器人在复杂环境下的实际功能需求,本文利用单目视觉、IMU与轮式里程计实时传感信息,进行移动机器人多传感信息融合位姿估计与速度控制研究。首先
经济社会的发展和生产力的提高促使机器人的应用越来越广泛,随着传感器技术的进步,机器人系统拥有了更加强大的探测和感知能力,大大推动了机器人应用技术的发展。但当前大部分的移动机器人在进行自主导航的过程中,其数据源严重依赖于单一传感器,且存在总线协议不统一、实时性差、应用较为复杂等问题。因此本课题基于ROS平台和EtherCAT通讯技术,将轮式里程计、激光雷达和深度相机等传感器进行融合,搭建了一个能够完