【摘 要】
:
情感是人类心理最基本的组成部分之一,对人类的情感进行分析有助于判断个体的认知及行为,有着广泛的应用场景。由于人类实际上是结合多种信息去判断他人的情感的,那么采用多模态深度学习开展情感分析工作成为了理所当然的选择。虽然引入多模态信息提高了情感预测的性能,但与此同时也引发了诸多呈待解决的新问题。而这些问题,本质上都是多模态表示的问题。本文从多模态表示学习的角度出发,针对多模态情感分析中的一些难以解决的
论文部分内容阅读
情感是人类心理最基本的组成部分之一,对人类的情感进行分析有助于判断个体的认知及行为,有着广泛的应用场景。由于人类实际上是结合多种信息去判断他人的情感的,那么采用多模态深度学习开展情感分析工作成为了理所当然的选择。虽然引入多模态信息提高了情感预测的性能,但与此同时也引发了诸多呈待解决的新问题。而这些问题,本质上都是多模态表示的问题。本文从多模态表示学习的角度出发,针对多模态情感分析中的一些难以解决的问题开展了一系列的研究。首先,对于情感识别任务中,如何恰当又有效的进行多模态表示的组合,开展了一系列研究,这也是多模态情感分析中最重要的问题之一。本文提出了一种自适应融合网络,将三种不同模态的表示分为三个不同的层次进行融合,并为每一种跨模态交互设计了权重计算单元。通过这种层次化、自适应的融合,从而捕捉三个模态间复杂交互特征。在此基础上,分别采用自监督学习捕捉三个模态的独特信息,并用多任务学习将上述模型进行有机的整合。在中英文两种情感分析数据的实验结果表明,该模型的性能对比其他基线模型具有一定优势,并通过消融实验验证了各模块的有效性。接下来,对于情感识别任务中,多模态表示维度过高难以处理并且噪声过多的问题进行了一系列的探索。本文提出了一种复合的表示信息压缩架构,先采用基于互信息最大化的跨模态表示提取的方法,对数据中的噪声进行剔除。并且为了能够捕捉跨模态交互,采用动态融合图模型将各模态表示进行融合。通过这一系列的方法剔除数据中的噪声,最后采用信息瓶颈方法进行表示的降维,使得融合后的表示能更好的进行情感分析任务。本文在MOSEI数据集上进行了实验,验证了该方法的有效性,并且相比于主流基线模型也具有一定的优势。最后,针对细粒度目标的多模态情感识别任务中,视觉表示难以利用的问题,本文提出了一种对比注意力机制。在面向目标的多模态BERT模型基础上,加入对比注意力机制。通过注意力的方式挖掘视觉表示与文本表示之间的差异信息,更加高效的从视觉表示中学习有效特征。通过在两个不同的细粒度情感数据集上的实验,对比其他基线模型提高了对正例的预测能力。消融实验结果表明,本文加入的这两种对比注意力起到了一定的作用。
其他文献
多任务优化是当前智能优化领域的热点之一,多任务优化算法在优化多个彼此相关的任务时,通过迁移任务之间的有效知识来提升各个任务的表现效果。但传统的多任务优化算法通常用于优化规模较小的任务组,在面对任务量较大的优化场景时,会出现迁移效果变差、计算成本升高、任务收敛变慢等问题。为解决这些问题,研究者们提出了多任务质量多样性算法,它能够生成大量多样化且表现效果好的解决方案,在一些特定场景下可以同时解决大量任
得益于深度学习的迅猛发展,信息检索领域中基于深度学习的检索模型也层出不穷。自预训练语言模型提出后,信息检索领域相关研究更是进行得如火如荼。作为信息检索领域的子领域,生物医学文本检索领域的研究却因为数据集不全、处理难度高等原因进展缓慢。但生物医学文本检索的发展对于人类健康有着重要的意义。尤其自新冠疫情以来,人们对健康问题的关注度更高、对生物医学文本的需求也更加迫切。因此,本文尝试将信息检索领域的研究
随着医疗信息化建设和生物科技的迅猛发展,生物医学文献和电子病历的数量呈现出指数级增长的态势,蕴含在这些生物医学文本中的信息成为生物医学研究的宝贵资源。但由于生物医学文本大都是以自然语言描述的非结构化形式存在,计算机无法直接对其进行有效的分析和利用。因此,通过生物医学文本挖掘技术对生物医学文本进行有价值信息的提取和利用,将对生物医疗技术的进步和医疗健康领域信息化建设的发展产生深远和积极的影响。生物医
浩如烟海的生物医学文献中储藏着大量非结构化的信息,是生物医学信息挖掘的重要来源,对于隐含知识发现研究而言更是宝贵的待开发资源。一方面,使用自然语言处理技术和深度学习方法自动化进行药物重定位,能够极大地降低药物研发的经济成本和时间成本;另一方面,药物重定位系统作为药物研究人员研发的参考依据,其推断结果需要具备充分的准确性和可解释性。如何高效而准确地将生物医学文本中的信息结构化是生物医学文本挖掘的一个
随着互联网技术的发展,越来越多的社交媒体网络平台逐渐产生,为人们带来了新的获取信息的途径,成为了人们日常生活中获取公开信息的主要来源方式。相比与传统的新闻媒体,微博、今日头条等社交媒体网络具有更好的互动性和时效性,有着更丰富的新闻表现形式,能够在新闻发生后第一时间帮助人们获取相关资讯。但是社交媒体网络中的新闻并非全部都是关键信息,包含大量冗余内容。人们可能需要花费更多的时间从新闻中获取需要的信息。
神经网络中文分词系统可以在手工标注资源丰富的领域内场景下能提供最先进的分词性能。但是,当遇到医疗领域等专业文本时,由于领域内标注资源的稀缺导致中文分词系统的性能骤降。现有神经网络中文分词系统在低频术语的分词上表现不佳。针对中文分词任务在跨领域场景下的数据分布不匹配和未登录词识别困难问题,提出了一种词典增强图卷积神经网络领域自适应中文分词方法。首先,利用外部词典对输入句子进行候选词匹配,构建基于词典
近年来,视频成为了各大媒体的主流数据,基于视频数据的研究成为了当下的热点。动作识别针对的是人体运动相关的视频,是目前人工智能领域中比较前沿的研究方向。动作识别已广泛应用于诸多领域,如步态分析、增强现实、人机交互、娱乐和游戏、体育科学等,因此具有巨大的研究意义和研究潜力。本文面向动作识别领域中的多粒度分类问题进行研究,当前相关算法已经取得了重大突破,然而仍存在一些待解决的问题。首先,现有方法中的自注
本篇报告是一篇关于机器翻译加译后编辑模式下的翻译实践报告。原文选自《泡沫灭火系统设计规范条文说明》的前两章。该文本是中国公司为援助柬埔寨消防建设,根据相关中国标准编写的文件,需要翻译成英文供柬埔寨相关部门作为该国国家标准借鉴使用。该项目旨在提高目标读者对消防规范的了解,并在翻译过程中提供有效的翻译策略。原文用词准确、严谨、逻辑性强,内容存在较多数字和表格,属于典型的信息型文本。在译后编辑过程中,通
目前,各种知识库中存储了海量的生物医学文本,其数量还在呈指数增长。这些文献是生物医学技术发展的结晶,通过信息抽取技术挖掘隐藏在生物医学文本中的有用知识是一个重要的研究课题。实体关系抽取是信息抽取的一个关键子任务,它在命名实体识别的基础上,把包含实体对的文本分类到预先定义好的关系类型中。目前,面向生物医学文本的实体关系抽取研究致力于通过构建深度学习模型来自动地从无结构化的生物医学文本中抽取出结构化的
随着司法体制改革的不断纵深发展,法律文书数字化的程度不断提高,网络上可获得的法律文本信息实现了指数级的增长。但不同种类的法律文本书写规范相异较多,难以通过规则直接进行文档理解和知识分析。因此越来越多的研究者将自然语言处理技术应用到法律文本,通过信息抽取将非结构化的文本转化为结构化的数据,促进了司法信息化发展,提高了司法效率。信息抽取包括命名实体识别、关系抽取和事件抽取,目的在于抽取出文本中的实体关