论文部分内容阅读
在核爆或重大核与辐射事故中,辐射剂量率一般从天然本底水平到每小时数戈瑞以上迅速变化,响应范围超过8个量级。传统气体探测器G-M计数管,由于探测效率和本征死时间的影响,单个探测器无法完成整个量程的测量,需要采用多个具有不同量程范围的探测器切换,且在剂量率较高或变化较快的辐射场景中,容易出现饱和或误报。本文研究的厚型气体电子倍增器(厚GEM)具有灵敏体积大、响应时间快等特点,能有效解决灵敏体积和本征死时间之间的矛盾,因此单个探测器可以测量很宽的剂量率水平。厚GEM自发明以来,主要用于高能辐射探测领域,在辐射监测方面应用较少,本文首次系统地研究其X/γ辐射剂量率响应特性,并探索密闭式集成探测器的相关技术,为辐射监测仪器的发展提供新的技术手段,论文主要研究内容和结论概括如下:(1)采用多物理场耦合方法,分析了厚GEM对X/γ射线的物理响应机制。通过有限元方法(ANSYS)分析了厚GEM探测器的工作电场,结合流体动力学模型(COMSOL)和气体放电仿真(Garfield++)研究了电子倍增的产生机理,解释了厚GEM具有快时间响应的原因;利用蒙特卡罗粒子输运(MCNP5)和气体放电仿真计算了厚GEM探测器对X/γ射线的本征探测效率,并根据增益与信号甄别效率之间的关系,研究了厚GEM探测器探测效率的理论分析方法,完成了从射线源到脉冲信号的全物理过程理论模型研究,为探测器设计提供了理论依据。(2)设计了用于X/γ剂量率测量的流气式厚GEM探测器。理论计算了厚GEM膜的结构尺寸,并从5种相同结构、不同绝缘基材的厚GEM膜中筛选出一种综合性能最好的膜作为探测器的核心部件,该膜的起始电压低至510V,工作电压范围超过160V,平均增益超过8000,且一致性良好。通过材料、结构和电场优化,完成了流气式厚GEM探测器的腔室设计,入射窗采用10μm厚的镀铜聚酰亚胺薄膜,漂移极采用了蜂窝状的镀钨不锈钢片,漂移区距离为3mm,收集区距离为2mm,腔室壁为有机玻璃,侧壁的流气口依次与气瓶减压阀、流量计、泡瓶连接。(3)实验研究了厚GEM探测器的X/γ剂量率响应特性。文中用分立式高压和模块式读出方式,搭建了一套流气式厚GEM探测器测试系统,采用了计数和电流模式切换的方法,完成了厚GEM探测器对X/γ射线的剂量率线性响应范围从0.3μGy/h到8Gy/h的测量,量程范围达8个量级;首次研究了厚GEM探测器的能量响应和角响应特性,为探测器的下一步设计提供参考;本文还重点研究了厚GEM探测器的辐照稳定性,利用多物理场耦合方法对“Charging up/down”效应进行了分析,并结合实验解释了上电后的前半个小时内计数率不断上升的原因。通过对比G-M计数管性能,该探测器在宽量程剂量率测量方面具有明显优势。(4)对密闭式厚GEM集成探测器的关键技术进行了初步探索。基于国产ASCI集成芯片和小型高压模块设计了集成式读出系统,采用低放气率真空材料和高精度气压控制系统设计了密闭式厚GEM探测器。利用该套装置研究了低气压下厚GEM探测器的工作特性,为密闭式厚GEM探测器的充气工艺和工作电压设定提供了参考;本文还研究了密闭式厚GEM探测器的长期稳定性,长期工作时间超过60天,其中稳定工作时间超过30天(计数率相对变化误差不超过15%),为下一步密闭式厚GEM探测器的工艺改进指明了方向。这些研究也为厚GEM探测器的小型化、便携化提供设计思路。本文取得研究成果和学术贡献主要体现在:1)首次将厚GEM探测器应用于X/γ剂量率测量中,采用计数\电流切换的方法将单个探测器的剂量率响应范围拓展到8个量级,高于传统气体探测器量程范围;2)利用多物理场耦合分析的方法,建立了从射线作用机制到探测器性能分析的全过程仿真手段,为核辐射探测器虚拟设计提供了新的思路;3)研究了厚GEM探测器对X/γ剂量率的能量响应和角响应特性,分析了厚GEM探测器“Charging up/down”效应,提出了传导电流对增益稳定性的影响;4)开展了密闭式厚GEM集成探测器的相关研究,利用ASIC集成芯片和电阻链式高压模块,设计了集成式读出系统,研究了厚GEM探测器在密闭式状态下的工作特性,通过高真空环境获得和低放气率材料设计,使得该探测器在密闭式工作状态下稳定工作时间超过30天。