论文部分内容阅读
智能纺织品的发展对其舒适性的要求越来越高,其中水分管理在提高智能纺织品的舒适性方面起着至关重要的作用,并引起了广泛的关注。目前,国内外有关单向导湿织物的设计原理大都是利用差动毛细效应使汗液从里侧被吸附到织物外侧,从而达到吸湿排汗效果。然而,其导湿过程被动、无法对导湿过程及通量进行明确的可控操作,所以其在智能服装中的应用具有一定的局限性。因此,多学科交叉应用成为智能纺织品进一步发展的要求。本课题引入一种新颖的导湿理论——电渗原理,利用纺织基电极层层自组装电渗泵,基于纳米多孔膜微通道中微流控双电子层的原理在低压(1V~12V)驱动下通过电渗流带动和控制水分的传输。主要研究工作内容如下:(1)由于电渗泵的电极通常为硬质金属,所以使其难以用于智能可穿戴中,为了解决电极柔性的问题,本课题以聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)作为导电功能整理剂,水溶性聚氨酯(WPU)作为粘合材料,二者溶液按照4:1混合,然后通过高压喷涂技术在纯棉无纺布各纤维表面形成均匀的导电层(10次高压喷涂后织物表面电导率为50~60Ω/cm2),获得PEDOT:PSS改性棉质无纺布。随后通过层层组装的方法将制备的纺织基PEDOT:PSS电极与径迹蚀刻聚碳酸酯膜(PC膜)通过热压粘合技术制备电渗透复合材料,该材料具有良好的导水作用,平均质量通量为2.76mg?min-1?cm-2?V-1(驱动电压9 V~12 V)。(2)为了进一步提高织物的导电性及所制备的电渗泵具有更高的导湿通量,本课题采用石墨烯(0.1 g/mL)作为导电功能整理剂,通过浸渍涂层的方式在纯棉无纺布各纤维表面形成均匀的导电层(5次浸渍涂层后织物表面电导率为10~15Ω/cm2),获得石墨烯改性纯棉无纺布,随后将其组装电渗透复合材料并进一步研究其导水性能。研究发现,石墨烯改性的棉质无纺布导水性能有所提升,平均质量通量可达到4.64mg?min-1?cm-2?V-1(驱动电压7 V~10 V)。(3)由于高压喷涂和浸渍涂层的方法所制备的纺织基电极存在导电层脱落的问题,因此我们又采用碳纤维和镀镍金属无纺布作为纺织基电极,组装具有非对称电极的电渗复合材料。该组合不仅具有良好的导水作用,其平均质量通量高达23.49mg?min-1?cm-2?V-1(驱动电压1 V~6 V),而且其耐久性更是尤为突出,可以长时间(≥48h)浸泡在水中而保持其性能不发生改变,还可以在一定弯折角度内(0~150°)重复弯折至少500次,该材料不被破坏。作为概念验证,我们将可穿戴式电渗复合材料应用于运动鞋垫和运动服,以实现持久、充分的定向水分传输。这种水分传输可穿戴设备在诸如智能服装和医疗防护等领域具有较大的应用潜力。总之,电渗原理的引入使得织物可以实现定向的、高通量的、持久的导湿效果,并且通过PEDOT:PSS及石墨烯对棉织物进行导电处理及选用碳纤维和镀镍金属无纺布,制备出纺织基柔性电极,使得电渗泵可以应用于智能可穿戴领域,实现了多学科交叉来研究智能纺织品的目的。