多基线SAR三维成像技术研究

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:wuln2909
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,合成孔径雷达(Synthetic Aperture Radar,SAR)三维成像技术因其可以获取目标在真实三维空间中的分布和散射特性而引起人们的广泛关注。多基线SAR(Multibaseline SAR,MB SAR)是一种具有多条运动轨迹的SAR三维成像模式,它可以通过利用现有SAR系统进行简单的多基线成像几何扩展来实现三维成像,是一种十分具有应用前景的SAR三维成像模式。本文围绕MB SAR三维成像模式,针对高质量高分辨率MB SAR三维成像中的关键技术展开了深入的研究,主要的研究内容和创新点可总结如下:一、研究与分析了MB SAR三维成像模式中的相关理论基础问题。针对多基线直线SAR(Linear SAR,LSAR)和多基线圆周SAR(Circular SAR,CSAR)两种典型的MB SAR三维成像模式,分析了它们三维成像的基本原理和空间分辨率特性。尽管MB CSAR与MB LSAR的方位向运动轨迹不同,但是它们具有相同的层析向成像模型。因此,MB CSAR实测数据可以用来验证本文后续关于MB SAR层析成像处理方法的有效性和实用性。二、研究了MB SAR三维成像中的层析相位误差校正问题。在MB SAR三维成像中,层析相位误差是影响最终三维成像结果的重要因素。本文首先对MB SAR三维成像中层析相位误差的来源及其特性进行了分析。接着,针对层析相位误差空不变假设成立和不成立两种情况,分别提出了基于相位梯度自聚焦(Phase Gradient Autofocus,PGA)的层析相位误差校正方法和基于锐利优化自聚焦(Sharpness Optimization Autofocus,SOA)的层析相位误差校正方法。最后,利用MB SAR实测数据对本文提出的两种层析相位误差校正方法进行了实验验证,实验结果证明了所提方法的有效性和可行性。三、研究了MB SAR三维成像中的层析向高分辨率重建问题。在MB SAR三维成像中,实现层析向的高分辨率重建是获得最终高分辨率三维成像结果的关键。然而,实际中由于层析向总基线长度较短,导致层析向的瑞利分辨率较差。为了实现层析向高分辨率重建,本文提出了一种基于迭代自适应方法(Iterative Adaptive Approach,IAA)和广义似然比检测(Generalized Likelihood Ratio Test,GLRT)的层析向超分辨率重建方法。该方法首先利用IAA得到层析向超分辨率聚焦结果,然后利用GLRT进行模型阶数选择,从而得到层析向超分辨率稀疏重建结果。与目前应用较多的基于压缩感知的层析向超分辨率稀疏重建方法相比,本文所提方法不需要进行超参数优化调整,且能以更高的重建效率获得与其相比拟的超分辨性能和估计精度。四、研究了收发分置的多基线双站SAR(Bistatic SAR,Bi SAR)三维成像。收发分置的Bi SAR成像模式相对收发一体的单站SAR成像模式而言,具有隐蔽性强、安全性高以及构型配置灵活等优势。当发射平台或接收平台进行多航过飞行时,可实现MB Bi SAR三维成像。通过对MB Bi SAR三维成像的数学模型进行分析可知,MB Bi SAR三维成像具有与单站模式下的MB SAR相同的层析向成像模型。在同样的层析向分辨率和无模糊成像范围要求下,MB Bi SAR所需的轨迹数量与单站MB SAR相同。为了高效率地获取高精度的Bi SAR二维复图像,本文提出了一种基于椭圆极坐标的双站快速后向投影(Back Projection,BP)算法。与双站原始BP算法相比,所提方法可在保持成像精度的同时大大提高成像效率。在获取了满足要求的Bi SAR二维成像结果以后,层析向的相位误差校正以及高分辨率重建与单站MB SAR相同,可直接采用单站MB SAR相关处理方法。因此,MB Bi SAR三维成像可看作传统单站MB SAR的一种延伸应用。本文的研究内容已利用实测数据或仿真数据进行了实验验证,实验结果证明了文中所作理论分析的正确性和所提方法的有效性与实用性。因此,本文的研究内容具有一定的理论价值和工程实用价值。
其他文献
移动通信和信息社会的高速发展对宽带高速数据传输提出了越来越高的要求。毫米波MIMO成为实现高速数据传输的重要技术途径。考虑到一些特殊的需求和应用场景,比如对偏远地区的覆盖,构建应急通信系统,特别是军事宽带战术互联网,基于空中移动平台的毫米波MIMO技术成为当前研究的一个热点问题。目前,关注的热点是基于空中平台和毫米波MIMO技术实现区域骨干通信网络。本文主要围绕这一应用背景,针对其中的关键技术开展
圆周合成孔径雷达(Circular Synthetic Aperture Radar,CSAR)是一种特殊模式的合成孔径雷达(SAR),CSAR通过平台做圆周运动实现合成孔径,具有全方位角观测、波长级高分辨以及三维成像的能力。CSAR可以实现对观测区域的长时间侦察,尤其是对重点区域的地面动目标而言,利用CSAR可以实现地面动目标长时间跟踪,获得其运动轨迹信息。具有上述地面动目标指示(Ground
高精度时间服务是国家综合PNT(Positioning,Navigation,Timing)体系的重要组成部分,在国防军事、移动通信、天文观测等领域中发挥着重要作用。现阶段,基于光纤链路和基于激光链路的时间同步方法可以满足用户亚纳秒级的同步需求,但设备使用成本较高,动态灵活性受限。本文采用全球卫星导航系统(Global Navigation Satellite System,GNSS)授时的方式,
随着卫星导航系统的应用日益广泛,用户对测量精度的要求越来越高。在许多复杂环境中,多径误差和通道非理想特性造成的误差已成为导航系统的主要测量误差源。论文以提升复杂环境下的多径误差抑制性能和通道误差抑制性能为目标,研究了具有相邻载频的两个信号的联合接收技术和多子带信号处理技术。现将主要工作和创新成果总结如下:1)针对单信号多径抑制性能受限于信号体制的问题,结合北斗系统B1C和B1I的信号特点,研究了非
现代战场的电磁环境越来越复杂,电子战中对抗的双方都希望自己的雷达在能够有效探测对方雷达目标的同时,降低对方雷达侦察和截获自己的概率,来占据战争的主动权并获得更多的生存机会。因此,低截获概率(LPI)雷达信号已经广泛应用在现代雷达体制当中。在时频域而言,LPI雷达信号具有大时宽带宽的特点,这种特点可以降低雷达信号的峰值发射功率,甚至淹没在噪声中,这对侦察接收机的接收带宽和灵敏度提出了更高的要求。电子
作为舰船等水面运载体的核心导航设备,基于激光陀螺的高精度GNSS/INS组合导航系统可充分发挥惯导系统(Inertial Navigation System,INS)和全球卫星导航系统各自的优势,实现高精度、高可靠性、高采样率和长航时位置、速度和姿态测量。随着舰船搭载武器装备种类的不断增多、性能的不断提升,对GNSS/INS组合导航系统的测量精度提出了更高的要求。论文以海上高精度导航测绘为需求牵引
低小慢目标具有飞行高度低、运动速度慢、雷达散射面积小等特点,传统的雷达系统和探测技术实现可靠检测和鉴别的难度较大。典型的低小慢目标以微小型无人机为代表,当前在军事及民用领域广泛应用。对微小型无人机的检测与鉴别可以依托其微动特征。微动是目标或目标部件除主体平动之外的小幅振动、转动或高阶运动,反映了目标特有的结构特征,在雷达目标检测和鉴别领域受到广泛关注。利用旋翼的旋转特征作为更精细的雷达特征,可提高
卫星网络是促进国民经济发展和保障国家安全的重要基础设施,其概念一经提出就受到了世界各国的重点关注。经过多年的发展,卫星网络取得了一系列技术突破,但仍面临着网络升级与融合的困难,而软件定义网络(SDN)技术正是解决这些困难的一种有效途径。基于SDN的卫星网络统称为软件定义卫星网络。软件定义卫星网络能够实现控制平面与数据平面的解耦合,使得控制平面具备了逻辑上集中控制和开放可编程的能力,有利于卫星网络进
合成孔径雷达(Synthetic Aperture Radar,SAR)是一种相干微波遥感系统,它可以全天时、全天候地获取感兴趣区域的SAR图像数据。如今,SAR已经进入了高分辨时代。与中低分辨率SAR图像相比,高分辨率SAR图像呈现出丰富的纹理细节和清晰的几何结构,使人们有机会获取更多感兴趣区域的有用信息。然而,机遇与挑战并存,对高分辨率SAR图像进行自动解译需要引入新知识、发展新技术。在此背景
空间相干功率合成是高功率微波器件突破单管物理机制限制,实现更高输出功率的重要途径。由于具有输出微波频率、相位可控等优点,相对论速调管放大器成为空间相干功率合成的核心器件。传统空心相对论速调管放大器受到功率容量的限制,主要应用于S波段等低频段。为满足高pf 2因子的要求,本文采用三轴速调管放大器(TKA)技术路线,研究高功率高效率TKA谐振腔的设计方法、谐振腔之间杂模耦合的抑制、谐振腔之间微波正反馈