论文部分内容阅读
图G的Laplacian矩阵L(G)是研究其性质的一个重要工具.人们传统上用L(G)的特征值来研究图论,得到很多很好的结论.近二十年来,人们发现L(G)的Smith标准型和特征值一样,同为图的同构精细不变量,自然也是研究图论的好工具.本篇论文中的图的临界群的概念来自[30],国际著名数学家Biggs在[7]证明了图的临界群能够被L(C)的Smith标准型所刻划.本文研究了两类Cartesian乘积图Km×Cn和C4×Cn的Laplacian矩阵,得到了它们的Smith标准型,给出了这两类图的临界详细群结构和生成树数目.对于一般化的图,我们给出了其Smtih标准型的前三个不变因子的精确上界.