SAGD开采过程中的克拉玛依稠油储层岩石力学特征研究及应用

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:laumingka
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
如何有效缩短预热时间,提高蒸汽腔发育速度/质量,合理判断转入生产时机,评价地质力学因素在生产中的重要性,是当前克拉玛依超稠油SAGD(蒸汽辅助重力泄油)开采面临的难题。本文主要从地质力学角度探讨以上难题的解决方法。前人对克拉玛依油砂剪胀和张性扩容的力学/温度条件、微观变形机理和应力-渗流耦合关系认识不清。本文通过三轴剪切实验、等向压缩-膨胀循环加载实验、电镜扫描实验、渗透率实验等,研究了克拉玛依油砂在储层改造和SAGD开采条件下的变形特征、微观结构和渗流特征。三轴剪切实验发现,常温下0.5~2 MPa有效围压下存在应变软化和剪胀,剪胀量随围压降低而增加;45~70 oC时,0.5 MPa有效围压下应变软化和剪胀明显;100 oC下,0.5~5 MPa有效围压下均发生了明显的应变软化和剪胀。等向加载实验显示,随着孔隙压力增加,油砂体积膨胀,体积扩容量随温度增加而降低。电镜实验显示,原状油砂颗粒间的接触点/面稀少,粒间充填大量沥青/粘土混合物,具有沥青基底式胶结结构;常温和0.5 MPa有效围压下剪切带发育明显,砂粒显著翻转,形成粒间大孔隙;高温下沥青排出孔隙后,角砾状颗粒充分接触,形成“互锁”结构,提升剪胀潜能。渗透率实验显示,在低有效围压下发生剪胀有利于提高渗透率;随着平均有效应力降低,张性扩容诱导渗透率在半对数坐标中呈线性增加趋势。传统油砂本构模型未充分考虑温度、沥青相变和孔隙塌陷。本文改进了一种沥青基底式胶结油砂弹塑性本构模型,及考虑温度和有效含油饱和度的盖帽Drucker-Prager(D-P)模型。研究发现,从20 oC到70 oC,油砂弹性模量降低,体积模量和泊松比增加;70 oC到100 oC,弹性模量增加,体积模量和泊松比降低。随温度增加,D-P内摩擦角和粘聚力降低,剪切屈服面和盖帽屈服面均收缩。剪胀诱导渗透率与体应变呈近似线性关系。张性扩容诱导渗透率随体应变增加而增加,温度较高时渗透率增加幅度更大。采用Touhidi-Baghini公式拟合渗透率-体应变关系的效果较好。体积扩容后,岩石孔隙度和含水饱和度均增加。传统模型没有考虑SAGD不同开采阶段稠油热-流-固耦合机理的差异性,没有考虑稠油相态变化对热-流-固耦合分析的影响。本文建立了SAGD全生命周期内储层改造-预热-生产各个阶段的热-流-固-相变耦合模型,给出了各阶段骨架热孔隙弹塑性变形方程、渗流方程和相变传热方程,推导了耦合有限元方程,给出了求解耦合方程组的数值算法。依据改进模型进行案例分析发现,挤液扩容阶段,模拟井底压力与现场实测数据相符,储层温度传播范围较小,井壁岩石应力路径沿着向左靠近剪切屈服面的方向移动,储层中仅有热孔隙弹性变形,井间区域孔隙度增加量最大。若不考虑井筒传热效应,则应力路径整体向左上平移,更接近于剪切屈服面,但储层同样仅有热孔隙弹性变形,最大孔隙度增加量位于井壁处。对更深储层进行挤液改造,其应力路径整体向左上平移,更接近于剪切屈服面。预热阶段,井间热力连通充分,沥青相变区呈椭圆形,最大Mises应力位于井壁下方,井周附近半米范围内出现塑性区。若不考虑相变传热,则井间温度增加速度更快。蒸汽突破和蒸汽腔上升阶段,腔外压力传播比温度传播快,蒸汽腔正上部孔隙度增加量最大,蒸汽腔及其边缘位置发生塑性屈服;蒸汽腔横向扩展和蒸汽腔衰减阶段,泄油区体积增加,蒸汽腔外两侧孔隙度增加量最大。本文提出了一套SAGD全生命周期内施工效果的评价建议,提出了一种直井辅助SAGD井改造含泥质夹层稠油储层的工程设想,并在理论上给予了佐证。研究表明,在挤液扩容阶段,增加注液压力或体积扩容量将扩大水力波及范围,增加井底距、井间距或注液粘度将缩小水力波及范围。在预热阶段,沥青相变界面移动速度和井壁热流量随时间逐渐降低,井间中点温度达到80 oC时即可转入生产。在生产阶段,考虑地质力学因素的预测产量高于传统模型。对含泥质夹层储层进行挤液扩容,上夹层正上部的孔隙压力基本没有增加,井壁岩石应力路径沿着向左接近剪切屈服面的方向移动,储层只有热孔隙弹性变形,两夹层中间的孔隙率增加量最大;沿着注汽井延伸方向,孔隙率差异大,导致不同井段预热阶段的初始蒸汽腔非均匀发育。采用直井辅助技术对含泥质夹层储层进行挤液扩容后,上夹层上部储层孔隙压力有明显提升,水平井井壁岩石应力路径向左移动,更加接近于剪切屈服面;对于含夹层段储层,孔隙比在纵向上整体增加,上夹层上部储层孔隙率显著改善。对于采用直井辅助挤液扩容后仍无法有效开采的储层,应当调整生产策略,将水平井改造为注汽井,直井改造为生产井进行开采。
其他文献
裂缝性油气藏是目前油气勘探中的热点,准确估算裂缝参数对储层的地震属性影响有利于储层预测。在实际储层中裂缝参数(裂隙密度、延伸度、张开度,方位等)很难定量测试。用正演模拟的方法可以较好地获得裂隙参数与速度和各向异性的关系,另一方面,已有的一些裂隙介质理论模型也需要得到实验的验证。而对于更复杂的多组裂隙地层,还缺少相应的估算弹性参数的模型。开展裂隙参数物理模型的实验研究和对复杂裂隙介质的建模,有助于裂
常规油气藏的“甜点”参数主要指的是孔隙度和渗透率。非常规油气藏的“甜点”参数较为复杂,包括脆性、有机质含量、成熟度、孔隙压力、孔渗特征、储层厚度、地应力等。页岩油气藏的甜点地震预测是页岩油气勘探的一项重要任务,但是,由于页岩具有较强的非均质性和强各向异性,目前页岩甜点的岩石物理性质不够明确,甜点地震定量预测存在较大的不确定性和多解性。针对这一问题,我们开展了页岩的岩石物理分析和建模方法研究,重点针
潜山油气勘探是冀中坳陷油气勘探的重要领域,随着勘探程度的深入,迫切需要油气成藏机理的理论研究来指导下一步的油气勘探实践。本论文以冀中坳陷北部河西务反转型斜坡潜山带和南部束鹿继承型斜坡潜山带两个典型潜山带为研究对象,基于含油气系统的研究思路,综合应用地质、地球物理和地球化学手段,运用有机和无机地球化学相结合、静态解剖与动态过程研究相结合的方法,明确了烃源灶规模及演化史,揭示了油气成因类型及来源,分析
页岩具有独特的组分和微观结构,其弹性性质通常呈现较强的各向异性,这对其地震和声波测井响应具有显著的影响。中国南方四川盆地的东部及南部地区富有机质的海相页岩目前是页岩气勘探的重要目标之一,本文对该区东南部武隆接龙乡、彭水郁山一带页岩取样,进行了一系列岩石物理实验。通过对比国内外不同地区的岩石物理实验数据结果,给出了中国南方海相页岩速度特征、储层矿物特征、弹性特征,依靠理论模型讨论并分析了页岩不同参数
随着海洋油气资源的开发,海上油气生产系统的运行监测面临着严峻挑战:复杂的海洋环境、过高的多相流量计安装和维护成本、多种误差对温度和压力仪表测量值的干扰等因素导致生产系统运行数据获取难度大、成本高、可靠性低,制约着海上油气田的安全生产。为了解决以上问题,本文基于反问题研究理论,对海上天然气生产系统开展了过程辨识和软测量研究,建立了数据驱动和模型驱动等两类最优估计算法,完善了流动管理系统的软测量功能模
页岩气资源丰富,但由于多采用衰竭式开发,采收率普遍低于30%。二氧化碳在超临界条件下具有低表面张力和高吸附强度等特性,页岩气藏注二氧化碳开采具有巨大的潜力。注二氧化碳开采中,页岩纳米孔隙中的甲烷处于与二氧化碳和水分并存的环境。因此,开展甲烷/二氧化碳竞争吸附机理以及水分的影响机制研究可为页岩气藏地质储量评估以及注二氧化碳开采奠定理论基础。本论文以分子模拟为主要方法,以实验测试为辅助手段,结合干酪根
干热岩地层通常具有高温、渗透率低、无水或极少含水等特点。为了开采地下高温岩石中赋存的热量,需要通过水力压裂等技术在地层中形成具有一定换热面积和高导流能力的人造热储/大规模裂缝网络,实现注采井之间的采热流体循环,即所谓的建立增强型地热系统。裂缝网络的空间展布对于热储的换热效果和寿命具有十分重要的影响。在压裂和注采循环过程中,大量流体的注入导致岩石温度降低,从而使得地层的应力场与岩石性质发生变化。这种
非常规油气藏的开发是我国能源领域战略决策中的重点,而水平井压裂技术是开发这类油藏的核心技术,其压裂后形成的复杂缝网和储层的致密基质构成了非常规储层油气的主要渗流介质。目前,虽然建立了诸多针对这类介质中流动的数值模拟方法,但还存在模型维度低不足以刻画缝网立体分布、计算精度低、对复杂地质条件和渗流模型适应性差等方面的问题,因此,建立高效高精度且具有广泛渗流模型适应性的三维缝网流动数值模型对于非常规油气
液氮射流是一种新型高效的破岩手段,在提升深部硬岩地层破岩效率方面具有良好的应用潜力。为揭示液氮射流破岩机理以及探索应用液氮射流进行钻井提速的可行性,采用室内实验、理论分析和数值模拟相结合的方式,针对液氮冷却下高温岩石的物性劣化规律、射流流场与传热特征、液氮射流破岩特性以及多场耦合下岩石内应力响应机制等关键科学问题开展了研究,主要成果如下:1.实验测量了液氮冷却下高温岩石的物性变化,揭示了不同岩石的
地热资源是一种重要的可再生清洁能源。我国地热资源储量丰富,促进地热资源开发利用对缓解我国雾霾天气和改善能源战略布局等具有重大意义。传统对井地热系统需完钻两口井来注入与开采工质,且对井与储层接触面积小,沟通裂缝数量有限,注、采井间连通效果差。为解决上述问题,提出了一种多分支井循环二氧化碳开采地热资源的新方法,旨在利用单一主井眼实现取热工质的注入与开采,有望通过分支井眼增加与裂缝、储层的沟通能力,提高