论文部分内容阅读
氟化氘(DF)激光器输出波长(3.5~4.1μm)处于大气透射窗口,它是激光雷达、激光光谱学、激光与物质相互作用等领域急需的中波红外激光光源。本文围绕重复频率非链式DF激光器,重点研究了大体积均匀辉光放电,光学谐振腔,重复频率运转及尾气处理等关键技术。在此基础上,进行了DF激光器增益系数测量、光谱特性分析及激光器输出性能优化实验研究,为研制具有实用价值的非链式DF激光器奠定了基础。为了实现大体积均匀辉光放电,研究了火花针紫外预电离放电引发非链式DF激光器(采用LC反转电路)的放电特性。采用电子连续性方程与基尔霍夫回路方程建立了描述DF激光器放电特性的数学模型,并对理论模型进行了实验验证,发现理论与实验结果相符。进而运用该模型仿真获得了有利于提升注入能量的电路参数。为了获得更大间隙的辉光放电,引进了“自引发”放电方式,它采用一种倍压式反转电路和粗糙阴极结构,无需预电离装置即可实现大体积均匀放电。建立了能够描述倍压式反转电路放电特性的数学模型,实验与模拟结果均显示,“自引发”放电引发方式具有实现更大间隙辉光放电的潜力。谐振腔参数对激光器输出性能和抗失调特性影响显著,理论分析了平凹腔光束宽度、远场发散角、失调灵敏度及有效模体积随后反射镜曲率半径的变化关系,获得了最佳的后反射镜曲率半径参数。同时设计了三组正分支非稳定共焦腔参数,并分析了其失调特性。运用烧蚀法分别获得了平凹腔与非稳腔的近、远场光斑,实验测量平凹腔、非稳腔的远场发散角分别为6mrad、1.2mrad。DF激光器在封闭循环运转时,单次充气寿命较短,工作物质的消耗和放电产物的消激发作用是导致激光输出性能下降的主要因素。提出了一种可实时梯次更新工作气体的技术方案,并分析了化学吸附剂消除放电产物中消激发作用最显著的DF分子的可行性方案。采用分子筛吸附剂和工作气体实时更新系统,可有效提升激光器输出稳定性。通过分析DF激光器放电过程中发生的化学反应,发现其工作尾气中的有害成分主要为DF及SF4。进而分析了碱性溶液洗消DF及SF4的原理,并设计了一种小型化尾气洗消装置,处理后的工作尾气可达到国家安全排放标准。考虑了谱线加宽对增益系数的影响,推导了运用变耦合率法计算DF激光器增益系数的算法,并运用该算法实验研究了DF激光器横截面上的二维增益分布。运用DF激光谱线分析仪测量了DF激光器的输出光谱,在3.5~4.1μm范围内测得了22条谱线。对自引发放电非链式DF激光器工作气体参数进行了优化实验,在工作气体配比SF6:D2=8:1,充气总气压为8.1kPa时:获得的最大单脉冲能量为3.6J,脉冲宽度为135ns,峰值功率为26.67MW,电光转换效率为3.1%;50Hz重频运转时获得的最大输出功率为150W,电光转换效率为2.58%,激光脉冲幅值差小于±8%。