论文部分内容阅读
近年来具有脉冲效应的确定性传染病模型得到了广泛的研究并取得了深入的成果.脉冲传染病模型的研究为人们理解疾病在脉冲影响下的动力学行为、制定和检验传染病的防控策略提供了有效的帮助.然而现实世界中传染病的传播和发展不可避免会受到随机因素的影响.因此,在具有脉冲效应的情况下,研究传染病模型和生态流行病模型在环境白噪声扰动下的动力学行为有着非常实际的意义.本文的主要研究内容有1.具有脉冲疫苗接种的随机SIR传染病模型的动力学行为.分别考虑了系统扰动和接触率扰动的情况.首先证明原方程组等价于一个不含脉冲的随机系统,并证明了正解的存在唯一性.通过研究等价系统,我们给出了疾病灭绝和时间均值持久的充分条件.然后证明了边界周期解的全局吸引性.最后证明在一定条件下,系统正周期解的存在性.2.具有脉冲疫苗接种的随机SEIR传染病模型的动力学行为.分别考虑了一个一般的非线性发生率和一个特定的非线性发生率.利用辅助函数将原系统转化为一个等价的不含脉冲的随机系统,并证明了正解的存在唯一性.给出了疾病在大白噪声下灭绝的充分条件.最后,依靠Khasminskii的周期Markov过程理论,证明了系统正周期的解的存在性.3.具有脉冲效应的随机生态流行病模型的动力学行为.研究了两类具有脉冲效应的随机生态流行病模型.对于第一类模型研究了种群和疾病的灭绝性和随机持久性,并证明了正周期解的存在性.对于第二类模型种群和疾病的灭绝性和时间均值持久性,并给出了精确的时间均值.总之研究表明,白噪声对于具有脉冲的传染病模型和生态流行病模型有着确实的影响.当白噪声较小时,随机系统会有类似于确定性系统的性质,如周期性;当白噪声较大时,会导致疾病和种群的灭绝.本文的结论拓展了以往一些研究的工作,能使我们对随机传染病动力学有一些新的见解.从这个角度看,本论文有着实际的意义.