论文部分内容阅读
互穿网络结构复合材料(Interpenetrating Phase Composites,IPCs)利用多孔陶瓷相的特殊结构以及与金属相可能存在的界面反应获得结合强度较高的金属/陶瓷复合材料。与传统的颗粒、纤维等增强的金属基复合材料相比,互穿网络结构复合材料因其特殊结构有利于将集中在点或面上的应力迅速地在空间范围内分散和传递,能够大幅度地提高复合材料的承载能力。3D打印技术作为一种新型的增材制造技术,可以制备形状复杂、精度较高的零件,同时亦可通过人为设计制备特殊结构的零件,大大拓宽了材料的应用范围。本论文采用3D打印技术制备网络结构ZrO2预制体,结合无压浸渗工艺,制备了互穿网络结构ZrO2/Al-Mg复合材料,研究了ZrO2预制体的制备工艺、Al-Mg合金的无压浸渗工艺和复合材料的组织性能,主要研究结果如下:(1)通过3D打印技术成功制备具有网络结构的ZrO2预制体,设置不同的预制体参数,预制体的强度及性能也不相同。研究表明,当挤出头直径为0.6mm,线间间隙为0.6mm,搭接形式为挤出丝相邻层之间的搭接角度呈90°,烧结温度为1490℃时,制备的预制体整体均匀,强度高。(2)实验采用无压浸渗工艺制备互穿网络结构ZrO2/Al-Mg复合材料,浸渗过程中浸渗温度、浸渗气氛、合金中Mg含量是能够实现浸渗的三个重要因素。浸渗温度的提高促进浸渗的发生,当浸渗温度达到900℃以上时,Al-Mg合金在ZrO2预制体中能够良好浸渗,但是浸渗温度的提高会带来预制体变形和金属基体挥发的问题,因此合适的浸渗温度为900-950℃;浸渗气氛为真空和空气气氛下浸渗不发生,氩气气氛下仅发生微弱的浸渗现象,而氮气气氛下浸渗良好,因此,在浸渗过程中氮气参与了必要的反应,促进浸渗的进行;合金中镁含量的提高亦可促进浸渗的发生,当镁含量高于10wt.%时,浸渗效果会发生突变,浸渗效果明显,但在较高的镁含量下,浸渗虽良好发生,但由于金属液中镁含量过高导致金属过程中金属液挥发严重,且在较高的Mg含量下会生成Al3Mg2的硬脆相,严重影响复合材料的性能。研究表明,合金中的活性[Mg]对浸渗起到关键性作用。(3)复合材料界面发生明显的反应,微观上表现为金属相→块状物质→过渡层→陶瓷相,界面生成Al0.1Zr0.9O1.95、Zr0.875Mg0.125O1.875置换型固溶体及Al3Zr,这些物质使得金属相与陶瓷相机械啮合在一起,界面结合强度得到提高。预制体的烧结温度较低时,由于预制体强度较低,浸渗过程中预制体会发生破裂,当预制体烧结温度为1490℃时,浸渗过程中预制体完整。(4)复合材料的硬度明显优于纯Al-Mg合金。其机理为复合材料自身的互穿网络结构使得复合材料的硬度等性能得到很大程度的提升;摩擦过程中由于凸出陶瓷增强体减小了摩擦副与基体材料的有效接触面积,提高了其耐磨性。实验表明复合材料的磨损机制为磨粒磨损与粘着磨损的复合,其中以磨粒磨损为主。实验测得复合材料的硬度为196.5HV,磨损率为6.4×10-5g/(N·m)。