论文部分内容阅读
铜基纳米材料因其具有特殊的物理性质和化学性质,在催化、传感的领域有着巨大的应用潜能。本论文采用简单的低温液相合成法,成功地制备了一系列的不同维数的氧化铜纳米材料和具有高活性的铜纳米材料。探索了叶片状和海胆状氧化铜纳米结构的生长机理,研究了高活性铜纳米粒子的制备方法与性能,对合成的众多铜基材料进行了电化学测试。具体工作可以分为三个部分。一、在40℃的温度下,以Cu(CH3COO)2为铜源,NaOH溶液为碱源,通过控制Na3PO4的引入量,成功地合成了叶片状和海胆状的CuO纳米材料。通过对Na3PO4用量加入顺序、反应时间等合成条件的考察,结合XRD、SEM、HR-TEM等测试结果,深入研究了叶片状和高度组装的海胆状CuO纳米材料的形成机理。研究结果表明:随着Na3PO4的投入量增加,CuO纳米材料的组装程度增加。在CuO成核初期,PO43-与CuO晶面上的O2-结合,起到抑制晶面生长的作用。由于CuO每个晶面所暴露的O2-密度不一样,每个晶面吸附的PO43-数目不同,使得不同晶面的生长程度不同,最终形成由纳米棒组装的海胆状CuO纳米材料。对不同形貌的CuO纳米材料的电化学性能研究表明,在检测环境为0.1 mol·dm-3KOH溶液中,检测电位-0.1~0.4V(vs.Hg/HGO)的条件下,电流密度为1A·g-1时,组装程度最高的海胆状CuO材料修饰后的电极比电容最高,为171.1 F·g-1。说明组装程度越高,CuO纳米材料的电化学性能越优异。二、在60 ℃的水浴中,以Cu(CH3COO)2为铜源,以NaOH溶液为碱源,向溶液中引入NaBr,并调节NaBr的用量,成功制备了带状CuO纳米材料。通过考察NaOH溶液的加入方式、反应时间和NaBr的用量等合成条件对反应形貌的影响,研究了 Br-在带状CuO纳米材料形成过程中的作用。研究结果表明,中间体Cu2(OH)3Br的形成有利于新形貌的形成,通过加热分解制备氧化铜。三、在80 ℃水浴条件下,以CuSO4为铜源,NaH2PO2为还原剂,用不同的小分子有机酸调节溶液的pH为2~3,合成了具有高活性的Cu纳米粒子。小分子有机酸不仅起到调节pH的作用,还起到提高材料存储稳定性的作用。通过调节反应条件,结合SEM、FR-IT、TG-DTA等测试,研究了经小分子有机酸修饰过的Cu纳米材料的活性、存储稳定性,并对相关原理进行了深入分析。将经不同有机小分子修饰的Cu纳米材料应用于葡萄糖无酶传感器中,在0.10 mol·L-1 NaOH溶液中,测试电压0.6V,用0.05mol·L-1葡萄糖以规则的时间间隔注入,经不同类型的有机酸修饰的Cu材料对葡萄糖的催化性能表现出差异。并且每种Cu材料均表现出两条检测曲线。经赖氨酸修饰的Cu纳米材料对葡萄糖的检测灵敏度为253μA·mM-1·cm-2。