论文部分内容阅读
人类社会的发展离不开能源,在日趋现代化的今天,人类对能源越来越大的需求与常规化石能源的日渐枯竭成为人类社会可持续发展过程中必须要解决的问题。在对各种新能源的开发利用过程中,太阳能以其清洁及可再生性被认为是最有希望的新能源。目前,基于硅片的太阳能电池由于成本太高,很难与常规能源相竞争,要想用太阳能电池替代传统化石能源,就必须降低太阳能电池的生产成本,其主要途径之一是制造薄膜电池。氢化纳米晶硅薄膜(hydrogenated nanocrystalline silicon films,nc-Si:H)由于量子限制效应引起的晶体硅能带结构发生改变,使其具有较强的室温光致发光(photoluminescence)和电致发光(electroluminescence)特性成为薄膜太阳能电池发展的热点。其在太阳能电池中最初应用于pin结构中的掺杂层。由于非晶相的存在又使得这种材料具有较好的光敏性,因而在提高光照稳定性的情况下,还能获得较好的光伏特性。目前已有包括本征i层在内,完全使用nc-Si:H薄膜制备的太阳能电池。同时,由于nc-Si:H本征层的带隙(1.89eV)比一般非晶硅本征层(1.72eV)宽,使其成为叠层电池的重要组成部分。然而,作为一种两相结构,人们对nc-Si:H薄膜尤其是掺杂nc-Si:H薄膜的制备和成膜机理的研究还不充分,例如杂质在nc-Si:H薄膜中的分布、成键态及其对薄膜电学、光学性能影响的研究尚不完善。同时,现阶段的研究还主要集中在对沉积参数与薄膜结构性能的关系上,很少有将沉积参数、等离子体反应生成的前驱基团和薄膜结构性能联系到一起的系统研究。本文采用电子回旋共振等离子体化学气相沉积(ECR-PECVD)设备,通过在沉积腔室中通入PH3和B2H6分别制备了n型和p型nc-Si:H薄膜。在实验方面,应用TEM, XRD, Raman, XPS, FTIR等手段详细研究了气体流量、沉积温度等对薄膜结构的影响,通过Hall和透射光谱测试研究了不同实验参数下薄膜的电学及光学特性。结合对沉积环境的等离子体诊断,详细讨论了本征及掺杂nc-Si:H薄膜的生长机理及掺杂特性。在丰富了nc-Si:H及其掺杂薄膜制备技术的同时,为其沉积理论和掺杂机理的完善提供了实验基础。论文主要结论如下:1.本征纳米晶硅薄膜的制备及其结构性能研究通过ECR-PECVD设备可在较低的衬底温度下(250℃)直接在玻璃衬底上沉积得到nc-Si:H薄膜。研究了衬底温度、沉积时间、沉积气压、放电及反应气体流量对薄膜生长过程中结构及性能的影响,分析发现低工作气压(1.0Pa)和较短的沉积时间有利于直接沉积得到多晶面取向的nc-Si:H薄膜。在不同上游放电气体比(Ar/H2)对所沉积薄膜影响的研究过程中发现:在Ar/H2≤10/20时,薄膜生长速度及晶化率变化不大,继续提高腔室中Ar的比例,薄膜生长速度和晶化率将剧烈下降。以腔室中各气体的等离子体反应方程为依据,结合本文的实验现象和对沉积腔室等离子体环境的诊断,详细讨论了ECR环境下nc-Si:H薄膜的成膜机理及放电气体Ar/H2作用于所沉积nc-Si:H薄膜的影响机制,为后面掺杂nc-Si:H的制备提供了基础。2.磷掺杂纳米晶硅薄膜的制备及其结构性能研究在前面本征nc-Si:H薄膜制备的基础上,通过在反应腔室中通入PH3制备了磷掺杂n型nc-Si:H薄膜。实验结果表明:在低衬底温度(250℃)时,随着磷烷流量的提高,薄膜晶化率会发生下降,同时薄膜的电学性能下降,这种影响会随着衬底温度的提高而改善。提高衬底温度(350℃)后,薄膜的载流子浓度和电导率随着PH3流量的提高而提高,在PH3流量为1sccm时逐渐饱和,薄膜的电学性能不再随PH3流量的提高而上升。在不改变其他实验参数的情况下,通过在ECR上游放电腔室中通入适当比例的Ar气,可以在不提高PH3流量的情况下,进一步提高薄膜中载流子浓度。同时,适当比例Ar的通入可以在不降低薄膜晶化率的情况下使薄膜中氢的分布更加均匀,这对提高薄膜在使用过程中的稳定性有重要意义。然而,与本征硅薄膜生长情况相似,上游放电腔室中过高Ar的通入量会使薄膜的晶化率下降,不利于纳米晶相的保持。根据PH3和Ar的等离子体反应特性,结合对沉积腔室中电子温度变化的诊断,深入讨论了磷烷掺杂及Ar/H2对薄膜性能影响的作用机理。3.硼掺杂纳米晶硅薄膜的制备及其结构性能研究以B2H6为掺杂气源,在低衬底温度(250℃)下制备了晶化率较好(近60%)的p型nc-Si:H薄膜,薄膜的载流子浓度和电阻率分别可达到1.1×1019cm-3和9Ω·cm。薄膜在拥有较优电学性能的同时,其Egoptm在1.84~1.93eV附近,符合薄膜太阳能电池窗口材料的性能要求。研究过程中发现:与PH3掺杂不同,少量B2H6的通入不会抑制薄膜的晶化率,甚至有一定程度的提高。当B2H6通入量较高时,薄膜晶化率随B2H6流量的提高而下降。在上游放电腔室中通入一定比例的Ar气可以进一步提高p型nc-Si:H薄膜中硼的掺杂量,但此时薄膜的载流子浓度并没有提高,表明这部分杂质主要以非有效掺杂的形式存在。由于硼原子对硅薄膜生长有催化作用,在通入Ar的实验过程中所产生的薄膜沉积速度提高从侧面证明了Ar的通入可提高B2H6的解离率。之后,结合本文对沉积腔室等离子体环境的诊断和B2H6的等离子体反应特性,讨论了B2H6的掺杂机理。