论文部分内容阅读
随着科学技术的发展和进步,纳米光子学领域需要求解的物理模型也越来越复杂,并涉及多尺度化和多物理场效应等。时域有限差分(finite-difference time-domain,FDTD)法是解决纳米光子学中复杂电磁问题的一种常用方法。然而,FDTD在仿真计算时采用的时间步长受到空间网格大小的限制,导致在对纳米光子器件进行仿真计算时,存在运行时间较长的缺点。基于隐式无条件稳定局部一维(locally one-dimensional,LOD)FDTD法具有传统时域有限差分法所不具备的显著优势,而对于隐式LOD-FDTD法的研究,仍然需要进一步深入探索,主要包括以下三个方面:第一,提出更高精度、更高效率、更广泛适用性的无条件稳定LOD-FDTD法;第二,继续深入研究基于混合局部亚网格(sub-gridding)技术的LOD-FDTD法并完善局部亚网格技术;第三,在实际工程应用方面,不仅将LOD-FDTD法用于求解纳米光子学领域的电磁以及光学问题,还应将LOD-FDTD法应用于纳米光子器件数值设计方面,实现以仿真算法来验证设计方法,形成逻辑上的自洽。本研究致力于无条件稳定快速FDTD法及其在工程应用方面的研究:在理论上深入、系统地研究了隐式无条件稳定LOD-FDTD法、混合局部亚网格LOD-FDTD法、纳米光子器件的数值设计方法;进一步扩展了数值方法的工程应用范围,将LOD-FDTD法用于数值仿真周期性色散金属光栅的超强光透射(extraordinary optical transmission,EOT)现象、等离子体光子晶体(plasma photonic crystal,PPC)、周期性金属纳米粒子阵列透射谱以及纳米光子器件数值设计方面等。共分为以下四个部分:第一部分,研究了基于辅助差分方程的无条件稳定LOD-FDTD法,并用于周期性金属光栅结构的EOT现象分析。第一,将表征色散媒质的辅助差分方程(auxiliary differential equation,ADE)引入到隐式LOD-FDTD方法中,获得了适合计算色散媒质的ADE-LOD-FDTD方法。第二,研究了ADE-LOD-FDTD法的周期性边界条件(periodic boundary condition,PBC),获得了适用于仿真包含PBC边界的差分格式,扩展了ADE-LOD-FDTD法的应用范围。第三,将ADE-LOD-FDTD法用于纳米光子学中周期性色散金属光栅结构的EOT现象的研究。第二部分,研究了基于复包络(complex envelope,CE)技术的无条件稳定ADE-LOD-FDTD法。将复包络技术引入到ADE-LOD-FDTD算法中,并用提出的CE-ADE-LOD-FDTD算法分析了等离子体光子晶体的禁带特性。第一,将复包络技术引入到ADE-LOD-FDTD法中,获得了计算精度更高的无条件稳定CE-ADE-LOD-FDTD法。第二,推导了适合于CE-ADE-LOD-FDTD法的完美匹配层(perfectly matched layer,PML)吸收边界条件CE-PML,使得提出的方法可以准确、高效地求解和仿真无限空间中的纳米光子学问题。第三,将提出的CE-ADE-LOD-FDTD法应用于等离子体光子晶体的数值仿真中,扩展了CE-ADE-LOD-FDTD法的工程应用范围。第三部分,研究了基于传统显式ADE-FDTD法和隐式无条件稳定ADE-LOD-FDTD法的混合局部亚网格ADE-LOD-FDTD法,用于周期性金属纳米粒子阵列的透射光谱现象分析。第一,提出了混合局部亚网格ADE-LOD-FDTD法的理论体系。第二,为了进一步消除数值计算的不稳定性,对于粗网格和细网格区域的信息交换方式进行了修正,保证了数值计算的稳定性和高精度。第三,将提出的混合局部亚网格ADE-LOD-FDTD法应用于求解周期性金属纳米粒子阵列的透射光谱,并验证了混合亚网格方法的准确性和高效性。第四部分,研究了无条件稳定LOD-FDTD法在纳米光子器件数值设计方面的应用。第一,介绍了绝热导波结构的模式激励源引入技术。第二,提出了一种通用的绝热模式演化结构设计的数值方法(numerical method for designing efficient adiabatic mode evolution structure,NAMES),并将该方法应用于绝热锥形波导、绝热模式耦合器等绝热导波结构的设计中。结果证明所提出的数值设计方法具有良好的鲁棒性、稳定性、收敛性和通用性(不受限于特定的器件类型或器件的几何结构)。第三,介绍了任意绝热导波结构的模式重叠积分(mode overlap integral)的计算,并将无条件稳定LOD-FDTD法应用于NAMES方法设计的绝热导波结构,仿真计算绝热导波结构的模式重叠积分,验证了NAMES方法的准确性和高效性。