耗散机制下分布式量子纠缠的制备

来源 :哈尔滨工业大学 | 被引量 : 1次 | 上传用户:pangpanghai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
耗散能够破坏量子系统的动力学演化并导致消相干,因此一直被认为是一种消极的因素。如何找到一种可行的方法避免消相干成为量子科学发展的主要问题。在腔量子电动力学系统中,能够引起消相干的因素主要包括腔模泄漏和原子自发辐射等耗散过程。最近,人们提出了一个新颖的观点——耗散过程可以当做促进量子信息处理方案完成的有利条件,将系统中有害的耗散因素转变成一种积极因素。例如在原子-腔以及固态系统中利用系统中存在的耗散过程制备量子纠缠态。这是一种与传统观念截然不同的思想,通过合理地构建系统和环境的相互作用,耗散过程不再干扰幺正动力学的演化。严格地说,它们之间存在一种合作与竞争机制之间的统一和对立关系,共同驱动系统达到稳定。本文主要研究在可分离腔中单独或同时利用多种耗散机制制备分布式稳态纠缠,希望能够为实验工作提供方便和理论支持。在光纤连接和直接耦合的空间分离光学腔中,基于幺正动力学和耗散过程的合作与竞争机制提出两个分布式双原子稳态纠缠的制备方案。在这两个方案中只有一个节点中的原子被外部经典场驱动,这种单边操作能够大大简化实验进程且可以省略量子信息处理任务所需的纠缠分配过程从而保证远程量子信息处理任务的绝对安全。此外,基于当前的纠缠制备方案构建了具有多节点的量子隐形传送装置作为实际应用。数值模拟表明,当前可行的实验条件能够有效地实现该应用。在两个空间分离且彼此耦合的光学腔中,提出一个同时利用原子自发辐射过程以及腔模泄漏过程制备原子纠缠的方案。相干驱动场和耗散过程的结合共同驱动系统到达纠缠稳态。通过调节经典激光场的频率,目标态将会以不同的方式被制备。数值模拟表明,目标态具有较高的保真度和纯度且制备过程中不需要指定初态以及严格控制演化时间。由于方案将有害因素变为必不可少的资源,因此对腔品质因数要求更低。在三个利用光纤连接且空间分离的光学腔中,提出一个基于经典场诱导的相干驱动以及非局域玻色模衰减过程制备远距离三原子稳态纠缠的方案。在该方案中,系统动力学演化时间不需要严格控制且腔场衰减是一个重要资源。数值模拟表明,目标态的保真度对于有效原子自发辐射的变化不敏感。此外,方案将所制备纠缠的粒子数扩展至了N比特的情况。提出在两个空间分离的氮-空穴(NV)色心之间利用耗散过程制备形式可调的稳态纠缠的方案。方案中,NV色心分别固定在两个具有回音壁模且相互耦合的微环共振器表面。利用有效算符方法推导出的有效主方程将系统动力学演化约化到基态子空间。基于有效动力学过程,能够得到分别利用NV色心的自发辐射以及共振器光子丢失过程制备纠缠的系统参数条件。有趣的是,这两个条件完全相同。因此在某一范围内,这两个耗散因子能够同时作为有利资源实现纠缠制备。此外,通过合理地调制系统参数,方案所制备的目标态的形式是可调的。数值模拟表明,目标态具有较高的纯度和保真度且它们对于小的参数变化是不敏感的。
其他文献
足式机器人如今在视野范围内的路径规划方面有了长足的进步,能够避开或越过结构性地形。但是足式机器人侦查、测绘、救险等工作需要在松软、坑洼等野外地形下开展,这类非结构性地形往往因为土壤的物理参数及力学特性未知,容易使得机器人足端陷入较为松软的沙土中无法继续行进,在与地面接触过程中不能产生良好的附着而产生打滑现象。足-地作用力学研究则为足式机器人应对非结构性地形提供了核心解决方案。本文结合地面力学与经典
为了保证星际再入飞行器在极端热环境下的安全性和稳定性,发展高效、可行的热防护技术至关重要。对于飞行器热防护系统的优化设计与性能评价,开展外部热环境参数表征和结构热响应模型研究十分必要。基于此,引出三类关键热参量,分别为结构表面的热流,以及影响结构传热的反应热源和界面换热系数(包括接触热导和Stefan-Boltzmann辐射系数)。这些参量均显著依赖于多个材料性能参数,且易受结构服役环境影响,导致
有自主行为的个体所组成的群落出现的群体行为是随处可见的,所谓的“群体性”是指自治粒子群仅仅依靠有限的环境信息和简单规则逐渐形成一种有序运动的行为。这种群体行为无论在自然科学领域还是社会科学领域都具有十分重要的意义,因此对这种群体行为的建模和研究吸引了很多学者的关注。本文基于随机微分方程理论、拟梯度流理论及随机过程等理论,主要研究随机环境下Motsch-Tadmor模型(MT)、随机和连续Kuram
ZrB2-SiC-Graphite(ZrB2-SiC-G)陶瓷复合材料具有优异的耐高温性、抗氧化烧蚀性等特点,并具有良好的导电性,是应用于有高温需求的微机电和微流控系统零部件较为理想的新材料。然而,ZrB2-SiC-G陶瓷采用多种不同性能的材料烧结制备而成,材料熔点和硬度极高,从材料成分到物理性能都表现出极大的特殊性。采用传统的接触式机械加工方法,刀具磨损严重且加工效率低。微细电火花加工技术具有非
随着航空航天工业的发展,新一代的运载装备提出了大型化、轻量化、长寿命和高可靠等要求,出现一类尺寸大、形状复杂、性能要求高的复杂整体薄壁构件。因为现有薄壁板坯的尺寸限制,需要采用拼焊坯料制造此类大尺寸整体薄壁构件。对于铝合金等室温下塑性差的轻质材料,需要在热态下成形以提高其成形性能。但是,铝合金拼焊坯料在高温变形过程中存在焊缝变形不协调、易开裂等问题。本文以2A12铝合金板材为对象,研究了高温下铝合
城市污水的生物处理过程中会伴随产生大量的剩余活性污泥,同时污水中大约60%的初始能量会被集中在剩余污泥之中。厌氧发酵是目前处理处置剩余污泥中应用最广泛的技术之一。短链脂肪酸是厌氧发酵的中间产物,它能够作为微生物的优质碳源来生产如中链脂肪酸等其它更高附加值的产品。本课题主要针对剩余污泥厌氧发酵中水解进程缓慢,所获得的短链脂肪酸溶解度较高难于分离等问题开展研究。采用强氧化剂高铁酸钾对剩余污泥进行预处理
DD3镍基高温合金兼有低廉的制造成本和优异的高温性能,在航空航天热端部件的制备领域贡献巨大。Ti3AlC2陶瓷作为新型纳米层状陶瓷的典型代表,在物理性能方面也有其独特的优势。为了发挥两类材料性能方面的长处,拓宽其应用领域,将两类材料连接到一起具有重大意义,也是本论文研究的出发点。考虑到DD3合金和Ti3AlC2陶瓷物理性能的巨大差异,本研究中采用扩散连接技术对两者进行连接。添加Ni中间层对两者进行
偏微分方程(PDEs)被广泛用于解释科学和工程领域中许多复杂的自然现象。近年来,人们更加关注PDEs中未知参数的反演问题,例如源项或边界数据的重构。特别地,关于波动方程的反源问题,目前已有许多理论和数值研究工作。点源反演问题的目标是通过测量数据(近场或远场数据)识别未知点源的某些参数(如位置和强度)。点源反演问题往往缺乏唯一性或稳定性,因而在数学研究上具有一定的挑战性,因此,本文致力于研究固定频率
在海洋装备中,与海洋微生物附着有关的材料腐蚀破坏占涉海材料总量的70-80%。因此,海洋微生物污损问题是海洋国防、海洋资源开发过程中最亟需解决的难题之一。随着我国海洋装备结构轻量化、航天设施沿海化的发展,铝合金材料在高湿、高盐的复杂海洋环境中应用越来越广泛,如:高速高运载能力的运输舰船身、海洋直升机起降平台支架、大运载火箭壳结构以及舰载武器底座等。本文面向铝合金在渤海水环境服役后,表面产生的海洋微
随钻声波测井是在钻井的同时对井孔周围的地层进行探测,并为地质导向提供信息,该技术具有实时测量特性,有望减少测量成本。现有的测井资料表明,随钻声波测井中到时较早且幅度很大的钻铤波信号掩盖了来自地层的声波信号,导致无法提取到准确的地层纵波速度。前人采用在钻铤上刻槽的方式来消除钻铤波,但刻槽的隔声机理仍不明确,有必要深入研究随钻声波测井中钻铤波的传播规律和刻槽钻铤结构的隔声机理。本文采用三维直角坐标系下