论文部分内容阅读
本文重点综述了固态化锂电池及相关电极与电解质材料的研究进展。固态化锂二次电池具有比常规液态锂离子电池更高的比能量,且由于电池中几乎不含有液态电解质,对解决液态锂离子电池在非常规环境下可能产生的漏液、易燃、易爆等安全性问题,具有重要意义。固态化电解质的应用能简化电池结构,使电池的形状尺寸具有更灵活的可设计性。随着便携式电子设备和电动汽车日益增长的对高能量、高功率和高安全性需求的发展,固态化锂二次电池已成为国际研发的热点之一。开发新型薄膜电极和固态化电解质材料,优化电池结构设计是发展高性能固态化锂二次电池的基础。本文从开发制备新型电极和电解质材料入手,结合它们的物化特性,优化设计出新型固态化电池构造,首次制备出高安全性的固态化锂离子电池,继而研制出高比能和高安全性的固态化金属锂电池,实现了从固态化锂离子电池到固态化金属锂二次电池的技术转化;研究新材料,探索新概念,开发新体系,发展新技术,推动固态化锂二次电池的发展,实现规模化生产与应用,从而为进一步发展全固态锂二次电池奠定技术基础。本文围绕开发新型高性能固态化锂二次电池进行了系统的研究工作,主要取得了以下阶段性成果和进展。(1)采用磁控溅射技术制备出新型三元电极薄膜,用作固态化锂电池正极。通过射频磁控溅射在高纯氩气或氧-氩混合气中制备了三元正极薄膜,通过控制退火温度和时间,生成了一系列具有不同结晶度和欠锂化学组分的薄膜。预沉积薄膜为无定型态,具有高的化学扩散系数,表现出较好的电化学性能,这种薄膜电极适应于小电流微型电子设备,可应用于薄膜锂电池;高温退火薄膜具有稳定的晶体结构、欠锂化学组成、纳米粒子生长及微米厚度设计,表现出独特且良好的电化学性能,这种薄膜电极具有高的能量密度,适用于高比能锂电池正极材料,可应用到固态化锂电池。(2)采用磁控溅射技术制备出新型玻璃态磷酸锂包覆磷酸铁锂电极,可作为固态化锂电池正极。以磷酸锂为靶,磷酸铁锂电极为基片,通过射频磁控溅射制备了磷酸锂包覆磷酸铁锂复合电极,通过调节溅射功率和沉积时间,制备了一组具有不同包覆形貌的复合电极。包覆的磷酸锂薄膜是一种良好的锂离子导体,具有玻璃态结构本质,与磷酸铁锂电极形成珊瑚状多孔交联网络结构,促进了电极的离子和电子的传输,提高了界面电荷传质效率,改善了电极的结构稳定性。这类电极具有高的比容量和良好的功率特性,可应用于锂动力电池。(3)采用反应磁控溅射法制备出Li-Al-Ti-P-O-N薄膜电解质,用于全固态薄膜锂电池。以NASICON结构的Li Al Ti P O化合物为靶材,通过射频磁控溅射法在高纯氮气中制备了新型的Li-Al-Ti-P-O-N薄膜,通过改变沉积温度制得了一系列的薄膜。研究发现氮参杂取代了部分氧原子,降低了反应活化能,形成了更丰富的交联网络结构,促进了锂离子的传导;高温沉积提高了薄膜的结晶度,形成晶态-非晶态混合结构,同样有利于锂离子的传导。这类薄膜电解质具有较高的离子电导率和良好的电化学稳定性,可作为全固态薄膜锂电池用新一代电解质材料,未见文献报道。(4)采用溶胶-凝胶法合成出新型固态化介孔二氧化硅/离子液体复合电解质,并首次组装成固态化锂离子电池。复合电解质由多孔二氧化硅骨架原位吸附离子液体电解质组成,其中二氧化硅起支撑作用并吸附大量离子液体,离子液体被分散在孔道网络中,具有流体特征,作为锂离子的传导介质。复合电解质表现出接近液态电解质的高离子传导率和良好的电化学稳定性,它们还具有良好的热稳定性、化学稳定性和机械强度,成为一种新型高性能固态化电解质材料。利用复合电解质组装形成的新型固态化锂离子电池能正常工作,表现出良好的电池性能。(5)采用原位组装技术设计制备出新型固态化金属锂二次电池,完成了从固态化锂离子电池到固态化金属锂二次电池的技术转化,实现了金属锂电极的安全利用。这种固态化锂电池具有全新电池结构设计,表现出良好的电池综合性能,在实际应用中具有诸多优点:相比传统固态化电池体系,表现出更高的比能量和比功率;具有不漏液、耐高温、抗冲击和防止锂枝晶生长等的高安全性;原料丰富,制备简单,成本低廉,具有灵活的可设计性,易实现规模化生产;高效节能,绿色环保。这种新型固态化电池构造,为固态化锂电池技术的发展提供了新的科学思路,并对固态化锂电池的发展应用具有一定的促进作用。