【摘 要】
:
玄武岩纤维增强复合材料因其具有成本低、较高的机械性能以及良好的耐热性能等优点,广泛应用在汽车、航空、船舶和工业建筑等领域。然而,由于玄武岩纤维与树脂基体的界面粘结性能较差,导致其复合材料的整体机械性能不佳。本文采用共轭静电纺丝法将聚丙烯腈(PAN)纳米纤维包覆在玄武岩纤维表面制备了PAN/玄武岩纤维包芯纱,并织造了玄武岩纤维和包芯纱单向带及平纹织物,将其铺层与树脂进行复合固化制备了复合材料。采用纤
论文部分内容阅读
玄武岩纤维增强复合材料因其具有成本低、较高的机械性能以及良好的耐热性能等优点,广泛应用在汽车、航空、船舶和工业建筑等领域。然而,由于玄武岩纤维与树脂基体的界面粘结性能较差,导致其复合材料的整体机械性能不佳。本文采用共轭静电纺丝法将聚丙烯腈(PAN)纳米纤维包覆在玄武岩纤维表面制备了PAN/玄武岩纤维包芯纱,并织造了玄武岩纤维和包芯纱单向带及平纹织物,将其铺层与树脂进行复合固化制备了复合材料。采用纤维抽拔试验和短梁剪切试验对复合材料的界面结合性能和层间剪切性能进行了测试分析;研究了静电纺纳米纤维对玄武岩纤维增强复合材料的界面结合性能和层间剪切性能的影响规律及机理,结果表明:(1)相比玄武岩纤维增强复合材料,由最佳静电纺丝参数(芯纱移动速度0.25mm/s,转盘旋转速度200 rpm)制备的PAN/玄武岩纤维包芯纱增强复合材料的界面剪切强度提高了31.33%;(2)当在玄武岩纤维表面包覆PAN纳米纤维后,在玄武岩纤维与树脂之间形成了梯度界面层结构,这种梯度界面层可以促进界面粘合,有助于提高复合材料的界面结合性能;(3)相比纯玄武岩纤维增强单向带/平纹复合材料,PAN/玄武岩纤维包芯纱增强单向带/平纹复合材料的层间剪切强度分别提高了11.5%和8.72%;(4)复合材料的增强体结构对其层间性能及破坏模式有非常重要的影响,由于平纹织物结构所特有的经、纬两个方向的纤维增强体有利于阻止层间剪切裂纹的扩展,可以延长材料的最终失效时间。因此,在试验加载过程中,平纹织物增强复合材料要比单向带织物增强复合材料承受载荷更大,受力情况更为复杂。
其他文献
电磁波的广泛应用虽方便了人们的生活,但已经成为重要的环境污染源之一。对电磁波进行有效吸收不仅可以改善电磁环境,在军事上还能达到军事装备的隐身效果,所以研发具有优异电磁波吸收性能的材料是一个重要发展方向。本课题的目的是制备柔性结构的织物吸波材料而不是传统意义上的通过涂层整理等方式来实现吸波性能,采用湿法纺丝的方法,将不同含量的碳纳米管(CNT)、碳化硅(SiC)粉体添加到聚丙烯腈(PAN)纤维中,制
近年来,绿色纺织品因生态环保且对人体无危害而大受人们的推崇,因此,本文利用天然丝素蛋白对家纺棉纱进行整理,并利用改性后的纱线开发出一款绿色舒适性的家纺产品。丝素蛋白附着于家纺棉纱后能提高纱线的可织性和亲水性,再利用丝素家纺棉纱织造丝素家纺织物,使得织物具有吸湿、亲肤、柔软等众多优良的特性。首先,选取合适的蚕丝脱胶方案对蚕丝进行脱胶处理,然后将脱胶处理后的丝素纤维用溶解体系进行溶解,利用透析袋去除多
隔热材料已经广泛应用于建筑节能和航空航天等领域,随着科学水平的提高,对隔热材料提出了更严格的要求,要求材料在具有优异隔热性能的同时还要具有耐火性、高强度、轻质、抗腐蚀等性能,使得隔热材料的研究和探索成为热点。本课题以整体性能优异的机织间隔织物为增强体、导热系数较小的二氧化硅气凝胶等材料作为隔热填充材料制备了间隔织物增强二氧化硅气凝胶复合材料,并研究其隔热性能。首先选用无碱玻璃纤维合股纱为原料,通过
金属有机骨架材料(MOFs)作为一类近年来发展迅猛的多孔材料,凭借其独特的多孔结构和光电性能,已在吸附、光催化、荧光传感等领域展示出了非比寻常的应用优势。本论文主要探究两种Zr基有机骨架材料在处理水中Cr2O72-、Mn O4-和染料方面的应用潜能。主要研究内容如下:(1)采用氯化锆与2,2’-联喹啉-4,4’-二甲酸合成了中性骨架的Zr-有机骨架材料Zr-MOF-L1,并通过PXRD等方法对其结
目前全世界每年都有数以千万吨计的羊毛因为各种原因被遗弃,是数量最大的废弃蛋白质纤维资源。废弃羊毛对地球所造成的负担很大,会造成很多环境问题,但这些废弃羊毛拥有和普通羊毛相似的性能,完全可以再利用。因此,本课题以废弃羊毛为主要原料研制可降解的包装材料,对废弃羊毛纤维悬浮液的分散性和悬浮液分散表征方法进行了研究,得出了废弃羊毛纤维悬浮液分散的最佳工艺参数;对废弃羊毛湿法非织造包装材料的产品方案进行研究
在带材生产加工中,提高带材外观质量最重要的生产工艺是板材清洗,板材清洗过程中最主要的工具是挤干辊,我国目前使用的挤干辊材料一般是橡胶或金属,但这种材质的挤干辊因其本身缺少孔隙和不吸水的缺陷会导致挤干效果大打折扣。因此,国外发明了一种特殊材质的辊子—无纺布辊,其最大的特点是挤干效果好、寿命长、拆换方便等。国内有关挤干辊的研究更侧重于辊子的结构方面,本课题主要对无纺布辊用非织造材料进行研究。本课题的目
高硅氧玻璃纤维已广泛应用于航天器防热烧蚀材料、耐高温绝热体等方面,应用前景广阔。二元钠硅酸盐玻璃纤维生产高硅氧玻璃纤维纱,具有生产成本低、环境污染小等优点。但二元钠硅酸盐玻璃纤维化学稳定性极差,易受环境介质侵蚀,难以保存,原丝在空气中拉伸断裂强力会快速损失,纤维间相互粘结,无法进行退并、织造。目前的浸润剂不能有效保护二元钠硅酸盐玻璃纤维性能。本课题旨在研制一种能有效保护二元钠硅酸盐玻璃纤维生产、力
碳/碳(C/C)复合材料由碳纤维增强体和热解碳基体组成,C/C复合材料在服役过程中,界面脱粘导致的崩块、崩裂现象频发,异性构件性能和尺寸的不稳定性等,针对目前C/C复合材料在苛刻服役条件下的损伤演化问题,本研究将界面设计引入到碳纤维预制体增强的C/C复合材料中以提高复合材料力学性能。本文采用化学接枝法,将氧化石墨烯(GO)界面接枝在官能团修饰的碳纤维上,利用GO较高的比表面积和丰富的官能团构建纳米
碳/碳(Carbon/carbon,C/C)复合材料在服役过程中,崩裂、崩块、界面脱粘现象频发,严重制约了其在空天领域的深度应用。分析认为,C/C复合材料应力承载达到碳基体应力极限时,碳基体首先发生崩裂,产生破坏性裂纹并迅速传导至碳纤维(Carbon Fiber,CF)造成CF损伤,导致材料突发性失效。究其原因:一是碳基体缺乏亚微米、纳米尺度上的增强;二是碳纤维/基体界面结合状态不利于破坏性裂纹在