论文部分内容阅读
随着无线通信技术的迅猛发展,人们对通信系统的质量和抗干扰能力也提出了越来越高的要求。扩频通信技术因为具有良好的抗干扰、易实现多址、保密性好、抗衰落等特点,恰好满足这一需求。频率跳变系统(简称跳频系统,FH-SS)和直接序列扩频系统(简称直扩系统,DS-SS)是应用最多的两种扩频方式。由于在高速运动通信如卫星通信、导航系统、测距系统中多普勒频移的存在,考虑时间延迟和频率偏移的二维相关性跳频序列集的研究尤为重要。多相序列突破了二元序列理想相关值的序列数较少的限制,具有良好的相关特性且序列数目能更好的满足扩频通信的需求。高斯整数序列因其能获得高的带宽效率和传输速度而受到较大关注。本论文着重研究跳频序列集的二维相关性,通过有限域理论与组合方法相结合解决序列设计中的关键问题,设计具有达到或接近理论界的二维周期汉明相关跳频序列集,构造完备或几乎完备的高斯整数序列,建立复平面上的多相序列集与多相互补序列集。首先,研究跳频序列集周期汉明相关值的几个理论界,分析已存在的二维相关跳频序列集在该理论界下的最优性。计算现有的CAI-跳频序列和多项式同余跳频序列集二维周期汉明相关值,判断两类跳频序列集的二维周期汉明相关性是否达到或接近理论界,分析造成不能接近或达到理论界的关键原因。进一步改进CAI-跳频序列的构造方法,建立新的低碰撞区最优跳频序列集。其次,基于m-序列或其采样序列构造跳频序列。分析利用m-序列的连续状态序列结合特定映射构造的跳频序列集,借助有限域上方程的解等数学手段计算其二维汉明相关值。进一步将原构造方法加以推广,选择恰当的集合,利用m-序列的连续或非连续状态序列构造在相同限定条件下达到或接近理论界的新的跳频序列集。基于m-序列的Coulter-Matthews采样构造三元跳频序列,计算其二维汉明相关值。基于有限域上的差平衡函数和交织技术,首先选择适当的差平衡函数作为初始序列,其次选择有限域上的任意置换与初始序列相加作为基序列,最后对基序列利用合适的移位序列进行交织建立低碰撞区最优跳频序列集。再次,基于迹函数和多项式的复合函数构造新的跳频序列集。由于多项式参数的灵活多样性,基于多项式构造的序列集包含有较多数量的跳频序列,应用到通信系统中能容纳更多用户。首先提出了多项式与迹函数相结合构造的跳频序列集的二维汉明相关值的理论界,然后分别利用二项式与迹函数、模函数与迹函数的复合函数构造了跳频序列集,并借助指数和分析跳频序列集的二维汉明相关值,还分析了基于二项式构造的跳频序列的线性复杂度。最后,在由素数p确定的高斯整数剩余类上,构造p-1级完备或几乎完备的均衡高斯整数序列,给出实现该序列的具体实施步骤。借助加法特征和乘法特征构造在复平面的单位圆上取值的多相序列集以及多相准互补序列集,构造的序列集具有新的更加灵活的参数。