【摘 要】
:
真空辅助树脂灌注成型(VARI)工艺适合制造大尺寸、复杂形状的复合材料结构。为了保证复合材料产品质量,需要对制造过程中树脂的充模和固化信息进行精确有效的实时在线监测。鉴于碳/氮化物MXene和碳纳米管(CNTs)具有优异的导电性和良好的树脂相容性。本文采用逐层自组装工艺制备了一种高灵活性和灵敏度的柔性MXene/CNT薄膜传感器,利用扫描电镜对MXene/CNT薄膜的原始微观形貌进行表征,并对其传
论文部分内容阅读
真空辅助树脂灌注成型(VARI)工艺适合制造大尺寸、复杂形状的复合材料结构。为了保证复合材料产品质量,需要对制造过程中树脂的充模和固化信息进行精确有效的实时在线监测。鉴于碳/氮化物MXene和碳纳米管(CNTs)具有优异的导电性和良好的树脂相容性。本文采用逐层自组装工艺制备了一种高灵活性和灵敏度的柔性MXene/CNT薄膜传感器,利用扫描电镜对MXene/CNT薄膜的原始微观形貌进行表征,并对其传感机理进行了研究。在VARI工艺过程中将微纳米传感器嵌入复合材料的增强纤维层间或纤维与夹层结构之间,通过电阻测试采集平台获取传感器的电阻响应信息,建立微纳米结构三维交联网络导电模型,揭示传感器的电阻响应传感机理,阐明树脂充模过程中流动状态和传感器电阻信号之间的响应规律,并结合达西定律获得树脂对不同增强纤维层的渗透率。在监测树脂充模流动的同时,利用微纳米传感器进行树脂固化过程监测。完成制造监测后,微纳米传感器在复合材料结构中可执行结构健康监测的任务,实现复合材料的全寿命监测。研究表明,嵌入复合材料结构中的微纳米传感器可以有效的通过捕捉电阻响应信号,反馈出树脂充模过程中的流动状态和固化相态变化。通过微纳米传感器获得的树脂凝胶点为134℃,与DMA方法测试结果几乎一致。然后对布阵微纳米传感器的纤维增强复合材料层压板进行拉伸、弯曲和疲劳力学性能测试,结果表明通过微纳米传感器可以灵敏、准确的响应出复合材料结构的应变/应力状态。同时,通过碳纳米纸和MXene/CNT薄膜两种传感器监测结果的对比分析,证明微纳米传感器监测结果的准确和稳定性。本论文研究成果将为工程中复合材料液体成型工艺参数设计和复合材料全寿命健康监测提供理论基础和技术支撑。
其他文献
由于民航运输速度快和耗时短的优点,在日常居民出行和货物运输中所占的比例也在逐年升高,进而导致我国民航业务量激增,机场和航线数量持续增长。与此同时,机场的污染物排放及其环境污染问题也逐渐凸显。及时编制并更新民航机场的大气污染物排放清单,并将其应用于空气质量模型开展相关的数值模拟,可进一步为开展机场范围内空气质量预报和管控措施评估等相关工作提供基础数据支撑,对于明确机场污染物的扩散对其周边区域的环境影
相变材料在储热领域具有重要意义,但传统相变材料大多存在相变时易泄漏及低导热等问题,尤其是部分封装材料具有潜在毒性。针对这些问题,本课题采用溶胶-凝胶法实现了形状稳定复合相变材料的绿色制备,在引入氮化硼高导热介质条件下,强化了复合材料的导热能力。(1)通过溶胶-凝胶法制备了一系列形状稳定的复合相变材料,研究了正硅酸乙酯的添加量对复合相变材料形貌及热性能的影响。结果表明,复合相变材料呈现规则的球状交联
防震锤作为高压输电线路的重要部件,由于防震锤长期受到自然环境下太阳光照、风雨等的影响,因此极易受到损害,会造成防震锤螺栓松动,防震锤容易偏离原来的安装位置,从而会大大降低防震锤的减震效果。针对上述问题,开发新型的防震锤复位机器人,能够有效提高高压输电线路带电作业效率和安全性。对于防震锤复位机器人而言,目标识别是机器人作业的重要环节,本文重点针对防震锤复位机器人的目标识别系统展开深入研究。本文主要的
倾转旋翼机是近些年研发的一种新型飞行器,其既可以像固定翼飞机一样进行长距离运输和高速巡航,又可以像直升机一样不受地形环境的影响进行垂直起飞与降落。倾转旋翼机根据其短舱倾角的不同,具有三种不同形态:直升机形态、过渡形态和固定翼形态。本文针对倾转旋翼机的飞行过程,对其过渡段控制算法进行了改进,并提出了一种新型跟踪控制器,实现了倾转旋翼机垂直起降及其过渡过程的飞行跟踪控制。首先,本文完成了倾转旋翼机过渡
油页岩与生物质共热解过程中由于原料之间的相互作用,可以促进热分解并提高产品质量。基于此,本文选用抚顺油页岩与常见生物质玉米秸秆,通过热重-红外-气相质谱联用仪和管式炉固定床实验,探究了油页岩与玉米秸秆共热解特性以及原料热预处理温度的影响,并基于此阐明了油页岩和玉米秸秆之间的共热解协同机制。采用热重-红外-气相质谱联用仪和管式炉研究油页岩与玉米秸秆共热解特性以及产油特性。结果表明,玉米秸秆掺混比为5
涡轮基双模态组合循环发动机是亚声速/超(高)声速两级入轨飞行器领域中的重要推进装置,其进气道的几何型面、内部流场特性以及性能参数等应用基础领域的研究备受关注。随着飞行马赫数的增加,进气道的布局,以及由于超声速气流产生的激波、膨胀波等波系对内部流场的影响愈加显著,同时进气道典型工作状态的识别等也显得越发重要。此外,在进气道模态转换时,由于压缩板产生激波压缩效应,导致进气道激波波阻损失和气流溢流,对发
教材选编的文言文都是古代汉语的典范之作,是中国古人情感态度和价值观的集中体现。同时,它讲究章法,富有审美意义,蕴含着博大精深的中华优秀传统文化。小学生学习篇幅精短的文言文,不但可以初步接触、认识古代汉语语法,建构古代汉语语用经验,而且可以借助文中的故事情节和人物言行,了解古人的思维方式,提升思维品质,发展思维能力。同时,文言文结构严谨,语言典雅,吟诵涵泳可以提升学生的审美鉴赏和创造能力,并能坚定学
工业废水中的染料废水的去除依旧是环境领域有待解决的问题。目前由于光催化氧化技术具有绿色环保,高效等优势使得其在降解染料废水领域备受关注。在众多的光催化材料中,金属-有机框架(Metal-Organic Frameworks)因其高孔隙率,较大表面积,较强稳定性等优点让其在光催化领域具有巨大的应用潜力。Ui O-66-NH2作为一种典型的金属-有机框架材料还具有良好的可见光活性,但因快速的光激发载流
随着科技发展,人们对材料的多功能化要求随之增多。多孔导电材料作为现代化功能材料,在催化,电容电极,电阻传感方面有重要应用,使用适当的方法构建多孔导电材料是实现其应用的关键。本论文在油包油(O/O)乳液模板的基础上引入水发泡,制备具有分级多孔结构的聚氨酯,再将还原氧化石墨烯(r GO)与碳纳米管(CNTs)填充进聚氨酯孔隙,制备了柔性导电多孔聚氨酯复合材料。通过改变乳液配方合成了一系列分级多孔聚氨酯
聚合物基复合材料因其优异的性能和结构可设计性而被广泛应用于诸多领域。其中,多组分聚合物基复合材料兼具界面效应和协同效应双重优势,可将材料性能提升更大化,从而获得众多学者关注与研究。功能组分的选择和微观结构的设计是影响多组分复合材料性能的关键所在,为此,选择纳米二氧化钛(Ti O2)与石墨烯作为功能组分,构造多孔泡沫结构,以期望获得性能优良的复合材料。本文首先采用改进的Hummers法制备氧化石墨烯