基于内外双肋片的PV/PCM系统热管理研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:netrascal
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,化石燃料仍为主要能源,但其存在环境污染严重,增加碳排放,几十年内消耗殆尽的问题,能源危机已成为世界性挑战。清洁新能源被认为是能源危机的有效解决方案,近年来太阳能光伏(PV)发电技术凭借着其环保及普遍等优点迅速发展,但其发电效率受工作温度影响,严重制约了发电性能,因此,PV冷却技术应运而生。为实现PV电池的高效热管理,本文提出一种基于相变材料(PCM)的被动式PV冷却技术,内外双肋片贯穿PCM与环境连接形成热桥,可改善因PCM导热系数低导致的系统散热效果差的问题,延长系统热管理周期。首先,本文从风冷式强制冷却、表面式冷却、换热器式冷却、空气自然冷却、液浸式冷却、热管式冷却及PCM冷却等方面总结了近年来国内及国外PV发电系统热管理的研究工作,并重点阐述了PCM冷却系统的优势及弊端。为解决PCM导热差及温控周期短等问题,提出了内外双肋片PV/PCM系统。其次,建立了内外双肋片PV/PCM系统计算模型,验证了网格无关性、时间步长独立性及计算结果的准确性,确保了模拟结果的科学性及准确性。基于模拟软件Fluent,探索了恒定气象参数下,肋片间距、厚度及外肋片长度对该系统热电性能的影响,并得到了最优结构参数;同时,探究了太阳辐射强度、环境温度与PV电池温度及PCM液体分数的响应关系,研究了该系统的PCM熔化特性、液态PCM流动特性及PV电池工作特性,揭示了PCM对系统的冷却控温机制。最后,调取典型气象年气象数据,基于Guass模型拟合了太阳辐射变化关系式,简化了环境温度、有效天空温度及风速条件,编写了模型边界条件UDF程序,分别完成了内外双肋片PV/PCM系统肋片结构参数与海口市、北京市及哈尔滨市的匹配工作。此外,基于匹配参考值,计算并对比了PV装置、PV/PCM系统及内外双肋片PV/PCM系统的设备回收残值、成本折现值,并绘制了现金流量图,计算并分析了各系统净现值及回收周期及节能减排效益。本文所做研究对基于PCM冷却的PV发电系统的研究开辟了新方向,同时为有肋片PV/PCM系统结构参数设计提供了重要参考价值。
其他文献
微波离子推力器的长寿命,高比冲,高效率,微推力等特点使其在深空探测以及轨道保持方面拥有广阔的应用前景。碘工质的优势在于高密度存储以及价格低廉。因此碘工质微波离子推力器的应用可以减少载荷质量,降低发射成本,所以对其进行研究有着重要意义。本文首先进行了十字加热芯储供系统以及弹簧多孔板储供系统的实验,发现十字加热芯储供系统中的碘罐顶部会有碘工质凝结,弹簧多孔板的活塞会与石英玻璃碘罐相粘连。随后通过建模后
缸套是发动机中重要的核心部件之一,对于发动机的性能以及使用寿命有着显著的影响。发动机缸套工作在高温、高压等环境中,容易受到高温高压的影响而容易发生破坏,缸套与活塞之间的反复摩擦也容易导致其发生失效现象。随着超大型发动机的发展,对于部件也提出了更高的要求,需要大功率发动机缸套具有较高的强度、极好的耐磨性能。但是目前超大型高性能缸套的生产存在一系列瓶颈难题。本课题针对现阶段的商用灰铸铁缸套强度和硬度等
氢能是21世纪最具前景的二次能源之一,由于其无污染、燃烧热值高等优点,被誉为21世纪的绿色能源。其中,储氢技术是开发应用氢能的关键环节。在使用碳基材料吸附储氢时,杯罩型碳纳米管(CSCNT),对于储氢而言其结构方面优于常规的碳纳米管储氢材料,具有更好的储氢特性。考虑碳基材料本身储氢局限性,在本研究中,采用改性即负载铂金属的方式来提高杯罩型碳纳米管的储氢性能。为了更好的讨论分析改性后碳纳米材料的储氢
近年来,随着智能手机、智能手表等消费电子产品市场普及率的不断提高,人们对电子产品充电自由度的要求也越来越高。相比于传统有线拔插式充电方式,无线充电因其便捷、安全和美观的特点,而被越来越多地应用于消费电子产品。目前,多数的无线电能传输(Wireless Power Transmission,WPT)终端产品采用平面结构,利用的是低频的磁感应耦合技术,用户在充电时需要将设备对准指定的能量接收方向,并紧
CO2等温室气体大量排放已经导致了全球气候的变化,并成为全球最大的环境挑战之一,中国在国际社会上承诺加大碳减排行动的推动力度。新型富氧燃烧技术利用H2O代替常规空气燃烧中的N2,并辅以增压提升焦炭O2/H2O过程的燃烧效率,因此,能够实现高效碳捕集、规模化应用和对现有经济及产能结构冲击最小化,被认为是燃煤电站降低碳排放的有效途径。焦炭表面活性位数量的增加能有效降低反应能垒,加速O2/H2O燃烧反应
微型动力系统已经被广泛应用到生活的各个领域,尤其是在生物医学,航空航天等领域,未来的发展已经与微型动力系统的发展紧密联系在一起。微型燃烧器作为微型动力系统的核心部件,能否实现更加稳定燃烧已经成为当前主要关注点。微型燃烧器具有高能量密度的优势,极具发展前景,但受散热,“淬熄效应”等因素影响,火焰反应强度降低,甚至出现熄灭。为了更好促进微型燃烧器稳定高效运行,当前主要采用“超焓”燃烧技术和催化燃烧,加
霍尔推力器是国际上电推应用技术最成熟的电推进系统之一,由于近些年大力发展霍尔推力器,其工质氙气不仅面临资源减少,并且价格大幅提高,使得霍尔推力器成本随之上升。为了解决工质问题,特选取物理性质与氙气相近氪气作为替代工质。相较于氙工质,氪工质不仅储量丰富价格低廉,而且其理论比冲高于氙工质,但是其电离性能较差并且推力器热问题严重,尤其低功率更加重了这些问题,因此研究低功率氪工质霍尔推力器的充分电离优化及
近年来,随着超高速大排量叶轮机械的发展,对叶轮机械抗空化性能的需求逐渐提高。为了减小叶片的空化体积,抑制空化的发展,提高叶片的升阻力性能,通过研究发现海洋生物座头鲸的胸鳍前缘凸结具有良好的水动力特性及抗空化特性,因此选择与座头鲸胸鳍截面几何类似的NACA 634-021翼型进行数值模拟,阐明仿生翼型对空化流动的控制机理。本文的具体研究思路及结论如下:(1)首先通过大涡模拟方法对基础翼型和仿生翼型在
带电粒子(比如离子)与电场、流场、温度场等物理场之间的相互作用是导致电(热)对流现象的根本原因。电(热)对流蕴含丰富的物理内涵,但其本身问题复杂,求解困难且计算量大。本文采用介观的双松弛格子Boltzmann方法对介电液体电(热)对流进行模拟研究。首先,提出了一种可用于电(热)对流研究的优化LB方案,并结合数值模拟对优化前后的模型进行了对比分析。随后,利用CUDA平台的三维电热对流并行程序,研究了
旋转机械在我国工业发展的过程中占据着极其重要的地位,裂纹的出现会造成非常严重的生产事故以及财产损失。本文针对重型燃气轮机,分别研究其发生呼吸裂纹故障以及常开裂纹故障时的特征,确定其特征频率以及建立起设备故障诊断系统,用以预防大型事故具有非常重大的意义。根据重型燃气轮机的结构特点建立模型,运用余弦模型对于裂纹单元进行模拟,应用转子动力学有限元法以及Timoshenko梁理论建立转子系统,组装动力学方