论文部分内容阅读
微细加工在精密模具、航空航天、精密仪器、生物医疗等众多领域具有广泛的应用,目前发展的许多微细加工方法,如微细电火花加工、微细电化学加工、微细超声加工等,都需要使用微细电极来实现对微结构的加工。比如:用简单形状的微细柱状电极对微孔、槽和微小三维型腔的加工、使用阵列微细电极对群孔和复杂型腔的加工等。为保证微细加工的尺度和精度,对所使用工具电极的尺寸、形状、位置精度和表面质量等都有相应的要求。此外,最大限度降低工具电极位置精度对微加工的不利影响也是非常关键,因此需要通过在线制备的方法来避免电极因二次装夹而产生的重复定位误差。一些传统的精密制造方法虽然能够制造出直径小至几微米的微细电极,如车削法、铣削、研磨法、LIGA技术等,但它们一般不能实现对工具电极的在线制备,因而难以与后续的微细加工工艺相匹配。微细电极能否实现在线制备已经成为实现许多微细加工方法的前提和重要的关键技术之一。因此自主开发一套专用的微细工具电极在线制备装置具有重要的实际意义。微细电极的在线制备方法主要包括反拷块法、WEDG (线电极放电磨削)法、电化学腐蚀法、EEDG(刃口电极电火花磨削法)法等几种电加工方法,通过对微细工具电极在线制备技术进行了研究分析,确定了线电极放电磨削(WEDG)和反拷块法相结合的方案。论文对微细工具电极在线制备装置的开发进行了详细论述。主要包括直径700mm的转台,精密三位移台,大理石台面和立柱等,在这些整体结构设计的基础上,开展微细电极加工模块的设计制作,主要包括水平进给机构、垂直进给机构、旋转主轴、进电装置、观测装置等。针对微细电火花的加工要求,开发出针对线电极放电磨削和反拷块加工的控制系统。在装备和控制系统的基础之上,研究线电极放电磨削和块反拷加工的机理,并进行相关的工艺实验研究。在微细工具电极的加工实验中,对比了三种不同进给方式下的实验效果,切向进给具有比较好的优势,然后利用在线加工好的电极,在不锈钢板上了进行了打孔实验,取得了预期效果,同时验证了该装备具有很高的精度和稳定性。