论文部分内容阅读
随着科技的日益发展,近年来无人驾驶飞机在军事和民用等多个领域得到了快速的研究、发展和应用。但由于电池电量有限,无人机的续航能力一般较低,不能很好的满足各个领域的需要。通过无人机发动机的振动及空气动力载荷,利用压电材料的正压电效应,将振动能转化为电能,可以为无人机供电,这是增加续航能力的一种可行方法。本文将无人机机翼简化为复合材料层合悬臂矩形板,并在其表面铺设压电片,从理论和数值模拟两方面研究了压电复合悬臂板在承受不同的激励以及不同铺层参数下的非线性动力学响应及发电性能。该理论研究为基于振动的无人机压电能量采集器提供了理论科学依据,具有重要的工程应用价值。本文的具体研究内容分为以下几个部分:(1)将无人机机翼简化为由碳纤维增强复合材料和压电材料任意铺设的层合悬臂矩形板,承受横向简谐激励和面内参数激励的共同作用。利用经典板理论和Hamilton原理,推导出广义位移表示的压电复合悬臂板的非线性偏微分方程。利用Galerkin法将系统的非线性偏微分方程离散为两个自由度的常微分方程组。应用渐近摄动法分析了反对称正交铺设压电悬臂板主参数共振-1:2内共振的非线性振动响应。基于四维平均方程,用数值方法分析了横向外激励和面内激励对系统非线性振动的影响规律。用多尺度法研究了反对称角铺设压电悬臂板主参数共振-1:3内共振的非线性特性。根据推导的四维平均方程,利用数值方法研究了横向外激励幅值与阻尼系数对系统振动特性的影响。分析表明,反对称角铺设比反对称正交铺设的压电悬臂板的非线性行为更加复杂多变。(2)建立了压电复合悬臂矩形板能量采集器的力-电耦合方程,利用多尺度法对耦合方程进行了摄动分析,推导出系统的幅频响应方程。通过绘制一系列的幅频响应曲线,研究了外激励幅值和系统阻尼系数对系统非线性幅频特性的影响。基于力-电耦合方程,应用Matlab软件,数值模拟分析了系统取不同的阻尼系数时,横向外激励幅值对系统的非线性响应及发电性能的影响。(3)利用Galerkin法将系统的非线性偏微分方程离散为四个自由度的常微分方程。在Matlab软件中,利用四阶Runge-Kutta法,选取接近无人机机翼的尺寸和物理参数值,代入四阶非线性常微分方程组,进行了数值模拟。分别分析了压电复合材料层合悬臂矩形板在横向外激励幅值、系统阻尼和压电参数变化时,系统非线性振动响应特性。分析结果表明,系统的四阶模态存在复杂的非线性耦合关系,同步出现了周期或混沌振动等形式。研究压电复合悬臂矩形板的前四阶模态是非常必要和重要的。(4)考虑任意角铺设压电复合悬臂矩形板受一阶横向气动力和面内参数激励的共同作用,根据Reddy高阶剪切板理论和Hamilton理论建立了系统的非线性动力学方程。利用Galerkin方法进行了无量纲三阶离散,得到三自由度的非线性常微分方程。改变压电复合悬臂矩形板的铺层参数,如宽厚比、?0铺层比例以及某些铺设角度,分析了系统一阶无量纲固有频率随铺层参数变化的规律。通过数值模拟,绘制了系统在不同铺设方式下的一系列幅频响应曲线图。利用多尺度法对任意角铺设压电悬臂板的三阶非线性常微分方程进行了摄动分析。选取不同的面内静载荷值,分别画出一阶横向振动位移随来流速度变化的分叉图。分析结果表明,面内静载荷越小,系统临界失稳速度越大。改变压电层合悬臂矩形板的部分铺层角度,绘制出一阶横向振动位移随来流速度变化的分叉图。对比了两种铺设方式对系统非线性振动特性的影响。